
Limits of Static Analysis for Malware Detection

Andreas Moser, Christopher Kruegel, and Engin Kirda
Secure Systems Lab

Technical University Vienna
{andy,chris,ek}@seclab.tuwien.ac.at

Abstract

Malicious code is an increasingly important problem
that threatens the security of computer systems. The tradi-
tional line of defense against malware is composed of mal-
ware detectors such as virus and spyware scanners. Un-
fortunately, both researchers and malware authors have
demonstrated that these scanners, which use pattern match-
ing to identify malware, can be easily evaded by simple code
transformations. To address this shortcoming, more pow-
erful malware detectors have been proposed. These tools
rely on semantic signatures and employ static analysis tech-
niques such as model checking and theorem proving to per-
form detection. While it has been shown that these systems
are highly effective in identifying current malware, it is less
clear how successful they would be against adversaries that
take into account the novel detection mechanisms.

The goal of this paper is to explore the limits of static
analysis for the detection of malicious code. To this end,
we present a binary obfuscation scheme that relies on the
idea of opaque constants, which are primitives that allow
us to load a constant into a register such that an analysis
tool cannot determine its value. Based on opaque constants,
we build obfuscation transformations that obscure program
control flow, disguise access to local and global variables,
and interrupt tracking of values held in processor registers.
Using our proposed obfuscation approach, we were able
to show that advanced semantics-based malware detectors
can be evaded. Moreover, our opaque constant primitive
can be applied in a way such that is provably hard to an-
alyze for any static code analyzer. This demonstrates that
static analysis techniques alone might no longer be suffi-
cient to identify malware.

1 Introduction

Malicious code (or malware) is defined as software that
fulfills the harmful intent of an attacker. The damage caused
by malware has dramatically increased in the past few

years [8]. One reason is the rising popularity of the Internet
and the resulting increase in the number of available vulner-
able machines because of security-unaware users. Another
reason is the elevated sophistication of the malicious code
itself.

Current systems to detect malicious code (most promi-
nently, virus scanners) are largely based on syntactic signa-
tures. That is, these systems are equipped with a database
of regular expressions that specify byte or instruction se-
quences that are considered malicious. A program is de-
clared malware when one of the signatures is identified in
the program’s code.

Recent work [2] has demonstrated that techniques such
as polymorphism and metamorphism are successful in evad-
ing commercial virus scanners. The reason is that syntactic
signatures are ignorant of the semantics of instructions. To
address this problem, a novel class of semantics-aware mal-
ware detectors was proposed. These detectors [3, 10, 11]
operate with abstract models, or templates, that describe the
behavior of malicious code. Because the syntactic prop-
erties of code are (largely) ignored, these techniques are
(mostly) resilient against the evasion attempts discussed
above. The premise of semantics-aware malware detectors
is that semantic properties are more difficult to morph in an
automated fashion than syntactic properties. While this is
most likely true, the extent to which this is more difficult is
less obvious. On one hand, semantics-aware detection faces
the challenge that the problem of deciding whether a certain
piece of code exhibits a certain behavior is undecidable in
the general case. On the other hand, it is also not trivial for
an attacker to automatically generate semantically equiva-
lent code.

The question that we address in this paper is the follow-
ing: How difficult is it for an attacker to evade semantics-
based malware detectors that use powerful static analysis to
identify malicious code? We try to answer this question by
introducing a binary code obfuscation technique that makes
it difficult for an advanced, semantics-based malware de-
tector to properly determine the effect of a piece of code.
For this obfuscation process, we use a primitive known as

1



opaque constant, which denotes a code sequence to load a
constant into a processor register whose value cannot be de-
termined statically. Based on opaque constants, we build a
number of obfuscation transformations that are difficult to
analyze statically.

Given our obfuscation scheme, the next question that
needs to be addressed is how these transformations should
be applied to a program. The easiest way, and the approach
chosen by most previous obfuscation approaches [6, 20], is
to work on the program’s source code. Applying obfusca-
tion at the source code level is the normal choice when the
distributor of a binary controls the source (e.g., to protect
intellectual property). For malware that is spreading in the
wild, source code is typically not available. Also, malware
authors are often reluctant to revealing their source code to
make analysis more difficult. Thus, to guard against objec-
tions that our presented threats are unrealistic, we present a
solution that operates directly on binaries.

The core contributions of our paper are as follows:

• We present a binary obfuscation scheme based on the
idea of opaque constants. This scheme allows us to
demonstrate that static analysis of advanced malware
detectors can be thwarted by scrambling control flow
and hiding data locations and usage.

• We introduce a binary rewriting tool that allows us
to obfuscate Windows and Linux binary programs for
which no source code or debug information is avail-
able.

• We present experimental results that demonstrate that
semantics-aware malware detectors can be evaded suc-
cessfully. In addition, we show that our binary trans-
formations are robust, allowing us to run real-world
obfuscated binaries under both Linux and Windows.

The code obfuscation scheme introduced in this paper
provides a strong indication that static analysis alone might
not be sufficient to detect malicious code. In particular, we
introduce an obfuscation scheme that is provably hard to an-
alyze statically. Because of the many ways in which code
can be obfuscated and the fundamental limits in what can
be decided statically, we firmly believe that dynamic analy-
sis is a necessary complement to static detection techniques.
The reason is that dynamic techniques can monitor the in-
structions that are actually executed by a program and thus,
are immune to many code obfuscating transformations.

2 Code Obfuscation

In this section, we present the concepts of the transfor-
mations that we apply to make the code of a binary difficult
to analyze statically. As with most obfuscation approaches,

the basic idea behind our transformations is that either some
instructions of the original code are replaced by program
fragments that are semantically equivalent but more diffi-
cult to analyze, or that additional instructions are added to
the program that do not change its behavior.

2.1 Opaque Constants

Constant values are ubiquitous in binary code, be it as the
target of a control flow instruction, the address of a variable,
or an immediate operand of an arithmetic instruction. In its
simplest form, a constant is loaded into a register (expressed
by a move constant, $register instruction). An im-
portant obfuscation technique that we present in this paper
is based on the idea of replacing this load operation with a
set of semantically equivalent instructions that are difficult
to analyze statically. That is, we generate a code sequence
that always produces the same result (i.e., a given constant),
although this fact would be difficult to detect from static
analysis.i n t z e r o [ 3 2 ] = { z _ 3 1 , z _ 3 0 , . . . , z _ 0 } ;i n t o n e [ 3 2 ] = { o _ 3 1 , o _ 3 0 , . . . , o _ 0 } ;i n t u n k n o w n = l o a d _ f r o m _ r a n d o m _ a d d r e s s ( ) ;i n t c o n s t a n t = 0 ;f o r ( i = 0 ; i < 3 2 ; + + i ) {i f ( b i t _ a t _ p o s i t i o n ( u n k n o w n , i ) = = 0 )c o n s t a n t = c o n s t a n t x o r z e r o [ i ] ;e l s ec o n s t a n t = c o n s t a n t x o r o n e [ i ] ;}c o n s t a n t = c o n s t a n t o r s e t _ o n e s ;c o n s t a n t = c o n s t a n t a n d s e t _ z e r o s ;

Figure 1. Opaque constant calculation

Simple Opaque Constant Calculation Figure 1 shows
one approach to create a code sequence that makes use
of random input and different intermediate variable values
on different branches. In this code sequence, the value
unknown is a random value loaded during runtime. To
prepare the opaque constant calculation, the bits of the con-
stant that we aim to create have to be randomly partitioned
into two groups. The values of the arrays zero and one
are crafted such that after the for loop, all bits of the first
group have the correct, final value, while those of the sec-
ond group depend on the random input (and thus, are un-
known). Then, using the appropriate values for set ones
and set zeros, all bits of the second group are forced to

2



_ _ _ _b o o l e a n v 1 , . . . , v m , v 1 , . . . , v m ;b o o l e a n * V 1 1 , * V 1 2 , * V 1 3 ;. . .b o o l e a n * V n 1 , * V n 2 , * V n 3 ;c o n s t a n t = 1 ;f o r ( i = 0 ; i < n ; + + i )i f ! ( * V i 1 ) & & ! ( * V i 2 ) & & ! ( * V i 3 )c o n s t a n t = 0 ;
Figure 2. Opaque constant based on 3SAT

their correct values (while those of the first group are left
unchanged). The result is that all bits of constant hold
the desired value at the end of the execution of the code.

An important question is how the arrays zero and one
can be prepared such that all bits of the first group are guar-
anteed to hold their correct value. This can be accom-
plished by ensuring that, for each i, all bits that belong
to the first group have the same value for the two array
elements zero[i] and one[i]. Thus, independent of
whether zero[i] or one[i] is used in the xor opera-
tion with constant, the values of all bits in the first group
are known after each loop iteration. Of course, the bits
that belong to the second group can be randomly chosen
for all elements zero[i] and one[i]. Thus, the value
of constant itself is different after each loop iteration.
Because a static analyzer cannot determine the exact path
that will be chosen during execution, the number of pos-
sible constant values doubles after each loop iteration. In
such a case, the static analyzer would likely have to resort
to approximation, in which case the exact knowledge of the
constant is lost.

This problem could be addressed for example by intro-
ducing a more complex encoding for the constant. If we
use for instance the relationship between two bits to repre-
sent one bit of actual information, we avoid the problem that
single bits have the same value on every path. In this case,
off-the-shelf static analyzers can no longer track the precise
value of any variable.

Of course, given the knowledge of our scheme, the de-
fender has always the option to adapt the analysis such that
the used encoding is taken into account. Similar to be-
fore, it would be possible to keep the exact values for those
variables that encode the same value after each loop itera-
tion. However, this would require special treatment of the
particular encoding scheme in use. Our experimental re-

sults demonstrate that the simple opaque constant calcula-
tion is already sufficient to thwart current malware detec-
tors. However, we also explored the design space of opaque
constants to identify primitives for which stronger guaran-
tees with regard to robustness against static analysis can be
provided. In the following paragraphs, we discuss a prim-
itive that relies on the NP-hardness of the 3-satisfiability
problem.

NP-Hard Opaque Constant Calculation The idea of the
following opaque constant is that we encode the instance of
an NP-hard problem into a code sequence that calculates
our desired constant. That is, we create an opaque constant
such that the generation of an algorithm to precisely deter-
mine the result of the code sequence would be equivalent to
finding an algorithm to solve an NP-hard problem. For our
primitive, we have chosen the 3-satisfiability problem (typ-
ically abbreviated as 3SAT) as a problem that is known to
be hard to solve. The 3SAT problem is a decision problem
where a formula in Boolean logic is given in the following
form: ∧n

i=1(Vi1 ∨ Vi2 ∨ Vi3)

where Vij ∈ {v1, ..., vm} and v1, ..., vm are Boolean vari-
ables whose value can be either true or false. The task is
now to determine if there exists an assignment for the vari-
ables vk such that the given formula is satisfied (i.e., the
formula evaluates to true). 3SAT has been proven to be NP-
complete in [9].

Consider the code sequence in Figure 2. In this primi-
tive, we define m boolean variables v1 . . . vm, which corre-
spond directly to the variables in the given 3SAT formula.
By v1 . . . vm, we denote their negations. The pointers V11

to Vn3 refer to the variables used in the various clauses of
the formula. In other words, the pointers V11 to Vn3 encode
a 3SAT problem based on the variables v1 . . . vm. The loop
simply evaluates the encoded 3SAT formula on the input.
If the assignment of variables v1 . . . vm does not satisfy the
formula, there will always be at least one clause i that evalu-
ates to false. When the check in the loop is evaluated for that
specific clause, the result will always be true (as the check
is performed against the negate of the clause). Therefore,
the opaque constant will be set to 0. On the other hand, if
the assignment satisfies the encoded formula, the check per-
formed in the loop will never be true. Therefore, the value
of the opaque constant is not overwritten and remains 1.

In the opaque constant presented in Figure 2, the 3SAT
problem (that is, the pointers V11 to Vn3) is prepared by the
obfuscator. However, the actual assignment of boolean val-
ues to the variables v1 . . . vm is randomly performed during
runtime. Therefore, the analyzer cannot immediately evalu-
ate the formula. The trick of our opaque constant is that the

3



3SAT problem is prepared such that the formula is not sat-
isfiable. Thus, independent of the actual input, the constant
will always evaluate to 0. Of course, when a constant value
of 1 should be generated, we can simply invert the result of
the satisfiability test. Note that it is possible to efficiently
generate 3SAT instances that are not satisfiable with a high
probability [16]. A static analyzer that aims to exactly de-
termine the possible values of our opaque constant has to
solve the instance of the 3SAT problem. Thus, 3SAT is re-
ducible in polynomial time to the problem of exact static
analysis of the value of the given opaque constant.

Note that the method presented above only generates one
bit of opaque information but can be easily extended to cre-
ate arbitrarily long constants.

Basic Block Chaining One practical drawback of the
3SAT primitive presented above is that its output has to be
the same for all executions, regardless of the actual input.
As a result, one can conceive an analysis technique that
evaluates the opaque constant function for a few concrete
inputs. When all output values are equal, one can assume
that this output is the opaque value encoded. To counter this
analysis, we introduce a method that we denote basic block
chaining.

With basic block chaining, the input for the 3SAT
problems is not always selected randomly during runtime.
Moreover, we do not always generate unsatisfiable 3SAT
instances, but occasionally insert also satisfiable instances.
In addition, we ensure that the input that solves a satisfiable
formula is provided during runtime. To this end, the input
variables v1 . . . vm to the various 3SAT formulas are real-
ized as global variables. At the end of every basic block,
these global variables are set in one of the three following
ways: (1) to static random values, (2) to random values gen-
erated at runtime, or (3), to values specially crafted such that
they satisfy a solvable formula used to calculate the opaque
constant in the next basic block in the control flow graph.

To analyze a program that is obfuscated with basic block
chaining, the analyzer cannot rely on the fact that the en-
coded formula is always unsatisfiable. Also, when ran-
domly executing a few sample inputs, it is unlikely that
the analyzer chooses values that solve a satisfiable formula.
The only way to dissect an opaque constant would be to
first identify the basic block(s) that precede a certain for-
mula and then determine whether the input values stored in
this block satisfy the 3SAT problem. However, finding these
blocks is not trivial, as the control flow of the program is ob-
fuscated to make this task difficult (see the following Sec-
tion 2.2 for more details). Thus, the analysis would have
to start at the program entry point and either execute the
program dynamically or resort to an approach similar to
whole program simulation in which different branches are
followed from the start, resolving opaque constants as the

analysis progresses. Obviously, our obfuscation techniques
fail against such methods, and indeed, this is consistent with
an important point that we intend to make in this paper: dy-
namic analysis techniques are a promising and powerful ap-
proach to deal with obfuscated binaries.

2.2 Obfuscating Transformations

Using opaque constants, we possess a mechanism to load
a constant value into a register without the static analyzer
knowing its value. This mechanism can be expanded to per-
form a number of transformations that obfuscate the control
flow, data locations, and data usage of a program.

2.2.1 Control Flow Obfuscation

A central prerequisite for the ability to carry out advanced
program analysis is the availability of a control flow graph.
A Control Flow Graph (CFG) is defined as a directed graph
G = (V,E) in which the vertices u, v ∈ V represent basic
blocks and an edge e ∈ E : u → v represents a possible
flow of control from u to v. A basic block describes a se-
quence of instructions without any jumps or jump targets in
the middle. More formally, a basic block is defined as a se-
quence of instructions where the instruction in each position
dominates, or always executes before, all those in later po-
sitions. Furthermore, no other instruction executes between
two instructions in the same sequence. Directed edges be-
tween blocks represent jumps in the control flow, which are
caused by control transfer instructions (CTI) such as calls,
conditional jumps, and unconditional jumps.

The idea to obfuscate the control flow is to replace un-
conditional jump and call instructions with a sequence of
instructions that do not alter the control flow, but make it
difficult to determine the target of control transfer instruc-
tions. In other words, we attempt to make it as difficult
as possible for an analysis tool to identify the edges in the
control flow graph. Jump and call instructions exist as di-
rect and indirect variants. In case of a direct control trans-
fer instruction, the target address is provided as a constant
operand. To obfuscate such an instruction, it is replaced
with a code sequence that does not immediately reveal the
value of the jump target to an analyst. To this end, the sub-
stituted code first calculates the desired target address using
an opaque constant. Then, this value is saved on the stack
(along with a return address, in case the substituted instruc-
tion was a call). Finally, a x86 ret(urn) operation is
performed, which transfers control to the address stored on
top of the stack (i.e., the address that is pointed to by the
stack pointer). Because the target address was previously
pushed there, this instruction is equivalent to the original
jump or call operation.

Typically, this measure is enough to effectively avoid the
reconstruction of the CFG. In addition, we can also use ob-

4



fuscation for the return address. When we apply this more
complex variant to calls, they become practically indistin-
guishable from jumps, which makes the analysis of the re-
sulting binary even harder because calls are often treated
differently during analysis.

2.2.2 Data Location Obfuscation

The location of a data element is often specified by provid-
ing a constant, absolute address or a constant offset relative
to a particular register. In both cases, the task of a static an-
alyzer can be complicated if the actual data element that is
accessed is hidden.

When accessing a global data element, the compiler typ-
ically generates an operation that uses the constant address
of this element. To obfuscate this access, we first generate
code that uses an opaque constant to store the element’s ad-
dress in a register. In a second step, the original operation
is replaced by an equivalent one that uses the address in
the register instead of directly addressing the data element.
Accesses to local variables can be obfuscated in a similar
fashion. Local variable access is typically achieved by us-
ing a constant offset that is added to the value of the base
pointer register, or by subtracting a constant offset from the
stack pointer. In both cases, this offset can be loaded into
a register by means of an opaque constant primitive. Then,
the now unknown value (from the point of view of the static
analyzer) is used as offset to the base or stack pointer.

Another opportunity to apply data location obfuscation
are indirect function calls and indirect jumps. Modern op-
erating systems make heavy use of the concept of dynami-
cally linked libraries. With dynamically linked libraries, a
program specifies a set of library functions that are required
during execution. At program start-up, the dynamic linker
maps these requested functions into the address space of the
running process. The linker then populates a table (called
import table or procedure linkage table) with the addresses
of the loaded functions. The only thing a program has to
do to access a library function during runtime is to jump to
the corresponding address stored in the import table. This
“jump” is typically realized as an indirect function call in
which the actual target address of the library routine is taken
from a statically known address, which corresponds to the
appropriate table entry for this function.

Because the address of the import table entry is encoded
as a constant in the program code, dynamic library calls
yield information on what library functions a program ac-
tively uses. Furthermore, such calls also reveal the impor-
tant information of where these functions are called from.
Therefore, we decided to obfuscate import table entry ad-
dresses as well. To this end, the import table entry address
is first loaded into a register using an opaque constant. After
this step, a register-indirect call is performed.

2.2.3 Data Usage Obfuscation

With data location obfuscation, we can obfuscate memory
access to local and global variables. However, once values
are loaded into processor registers, they can be precisely
tracked. For example, when a function returns a value, this
return value is typically passed through a register. When the
value remains in the register and is later used as an argument
to another function call, the static analyzer can establish this
relationship. The problem from the point of view of the
obfuscator is that a static analysis tool can identify define-
use-chains for values in registers. That is, the analyzer can
identify when a value is loaded into a register and when it
is used later.

To make the identification of define-use chains more dif-
ficult, we obfuscate the presence of values in registers. To
this end, we insert code that temporarily spills register con-
tent to an obfuscated memory location and later reloads it.
This task is accomplished by first calculating the address of
a temporary storage location in memory using an opaque
constant. We then save the register to that memory location
and delete its content. Some time later, before the content of
the register is needed again, we use another opaque constant
primitive to construct the same address and reload the regis-
ter. For this process, unused sections of the stack are chosen
as temporary storage locations for spilled register values.

After this obfuscation mechanism is applied, a static
analysis can only identify two unrelated memory accesses.
Thus, this approach effectively introduces the uncertainty of
memory access to values held in registers.

3 Binary Transformation

To verify the effectiveness and robustness of the pre-
sented code obfuscation methods on real-world binaries,
it was necessary to implement a binary rewriting tool that
is capable of changing the code of arbitrary binaries with-
out assuming access to source code or program information
(such as relocation or debug information).

We did consider implementing our obfuscation tech-
niques as part of the compiler tool-chain. This task would
have been easier than rewriting existing binaries, as the
compiler has full knowledge about the code and data com-
ponents of a program and could insert obfuscation prim-
itives during code generation. Unfortunately, using a
compiler-based approach would have meant that it would
not have been possible to apply our code transformations to
real-world malware (except the few for which source code
is available on the net). Also, the ability to carry out trans-
formations directly on binary programs highlights the threat
that code obfuscation techniques pose to static analyzers.
When a modified compiler is required for obfuscation, a
typical argument that is brought forward is that the threat

5



is hypothetical because it is difficult to bundle a complete
compiler with a malware program. In contrast, shipping a
small binary rewriting engine together with malicious code
is more feasible for miscreants.

When we apply the transformations presented in this
paper to a binary program, the structure of the program
changes significantly. This is because the code that is be-
ing rewritten requires a larger number of instructions after
obfuscation, as single instructions get substituted by obfus-
cation primitives. To make room for the new instructions,
the existing code section is expanded and instructions are
shifted. This has important consequences. First, instruc-
tions that are targets of jump or call operations are relocated.
As a result, the operands of the corresponding jump and call
instructions need to be updated to point to these new ad-
dresses. Note that this also effects relative jumps, which do
not specify a complete target address, but only an offset rel-
ative to the current address. Second, when expanding the
code section, the adjacent data section has to be moved too.
Unfortunately for the obfuscator, the data section often con-
tains complex data structures that define pointers that refer
to other locations inside the data section. All these pointers
need to be adjusted as well.

Before instructions and their operands can be updated,
they need to be identified. At first glance, this might sound
straightforward. However, this is not the case because the
variable length of the x86 instruction set and the fact that
code and data elements are mixed in the code section make
perfect disassembly a difficult challenge.

In our system, we use a recursive traversal disassembler.
That is, we start by disassembling the program at the pro-
gram entry point specified in the program header. We disas-
semble the code recursively until every reachable procedure
has been processed. After that, we focus on the remaining
unknown sections. For these, we use a number of heuris-
tics to recognize them as possible code. These heuristics
include the use of byte signatures to identify function pro-
logues or jump tables. Whenever a code region is identified,
the recursive disassembler is restarted there. Otherwise, the
section is declared as data.

Our rewriting tool targets both the Linux ELF and the
Windows PE file formats. Using the recursive disassembler
approach and our heuristics, our binary rewriting tool is able
to correctly obfuscate many (although not all) real-world
binaries. More detailed results on the robustness of the tool
are provided in Section 4.

4 Evaluation

In this section, we present experimental results and dis-
cuss our experiences with our obfuscation tool. In particu-
lar, we assess how effective the proposed obfuscation tech-
niques are in evading malware detectors. In addition, we

analyze the robustness of our binary rewriting tool by pro-
cessing a large number of Linux and Windows applications.

4.1 Evasion Capabilities

To demonstrate that the presented obfuscation methods
can be used to effectively change the structure of a binary
so that static analysis tools fail to recognize the obfuscated
code, we conducted tests with real-world malware. We used
our tool to morph three worm programs and then analyzed
the obfuscated binaries using an advanced static analysis
tool [10] as well as four popular commercial virus scanners.

The malware samples that we selected for our experi-
ments were the A and F variants of the MyDoom worm and
the A variant of the Klez worm. We chose these samples
because they were used in the evaluation of the advanced
static analysis tool in [10]. Thus, the tool was equipped with
appropriate malware specifications to detect these worms.
In order to obfuscate the malicious executables, we de-
ployed the evasion techniques introduced in Section 2 using
both the simple opaque constants and the one based on the
3SAT problem.

Commercial Virus Scanners: First, we tested the pos-
sibilities to evade detection by popular virus scanners. To
evaluate the effectiveness of our obfuscation methods, we
selected the following four popular anti-virus applications:
McAfee Anti-Virus, Kaspersky Anti-Virus Personal, An-
tiVir Personal Edition, and Ikarus Virus Utilities.

Before the experiment, we verified that all scanners cor-
rectly identified the worms. Then, we obfuscated the three
malicious code samples, ensured that the malware was still
operating correctly, and ran the virus scanners on them. The
results are shown in Table 1. In this table, an “X” indicates
that the scanner was no longer able to detect the malware.

Klez.A MyDoom.A MyDoom.AF

McAfee X
Kaspersky X X X
AntiVir X
Ikarus X X X

Table 1. Evasion results for four commercial
virus scanners

The results demonstrate that after the obfuscation pro-
cess, the scanners from Kaspersky and Ikarus were not able
to detect any of the malware instances. Surprisingly for us,
however, the scanners from McAfee and AntiVir were still
able to detect two out of three worms. Closer examination
revealed that the scanner from McAfee detects the two ob-
fuscated samples because of a virus signature that is based

6



on parts of the data section. When we overwrote the bytes
in the data section that were being used as a signature, the
McAfee scanner could neither detect the original nor the
obfuscated version of the malware anymore. In contrast,
the AntiVir scanner uses a combination of both a data and a
code signature to detect the worms. We were able to track
down the data signature for both Klez.A and MyDoom.A
to a few bytes in the data section. If any of these bytes in
the data section was modified in the obfuscated binary, the
detection by the virus scanner was successfully evaded. In-
deed, it is relatively easy for malicious code to encrypt the
data section using a different key for each instance. Hence,
data signatures are not too difficult to evade.

Advanced Malware Detection (Model Checking): Be-
cause it is widely known that existing commercial virus
scanners typically employ pattern-based signatures, the
ability to evade their detection is not too surprising. In or-
der to verify the efficiency of our obfuscation techniques
on a more advanced malware detector, we obtained the sys-
tem presented in [10] from its authors. This detector first
creates a disassembly of the binary under analysis by us-
ing IDA Pro [7]. Then, model checking is used to search
for the existence of a generic code template that character-
izes malicious behavior. In particular, the tool attempts to
identify code sequences in the program that copy this pro-
gram’s binary to another location in the file system. More
precisely, a malicious code sequence is defined as a call to
the GetModuleFileNameA Windows API function, fol-
lowed by an invocation of the CopyFileA function. The
exact specification as presented in [10] is shown below.

EF(%syscall(GetModuleFileNameA, $*,
$pFile, 0) &

E %noassign($pFile) U
%syscall(CopyFileA, $pFile))

Note that this specification requires that the same vari-
able (pFile) is used as parameter in both function calls,
without being overwritten in between. Because the malware
detector uses a signature that characterizes the semantics of
a sequence of code, it is resilient to code modifications that
change the layout (e.g., register renaming or code insertion).

We first verified that the malicious code detector was
able to correctly identify the three original worms and then
applied our code transformations. After obfuscation, the
tool was no longer able to identify any of the three malware
instances. We examined in detail how our code transforma-
tions contributed to the successful evasion.

The first problem for the malware detector is its depen-
dency on IDA Pro. After we obfuscated direct call and jump
instructions, the recursive disassembler was no longer able
to follow the control flow of the application. In this sit-
uation, IDA Pro reverts to a linear sweep analysis, which

results in many disassembly errors. In fact, the output has
such a poor accuracy that the library calls cannot be iden-
tified anymore. When we disable our control flow obfus-
cation transformations, IDA Pro produces a correct disas-
sembly. However, the used detection signature relies on
the fact that the dynamically linked Windows API func-
tions GetModuleFileNameA and CopyFileA can be
correctly identified. When we employ data location obfus-
cation, the analyzer can no longer determine which entry
of the import table is used for library calls. Thus, the sec-
ond problem is that the detection tool can no longer resolve
the library function calls that are invoked by the malicious
code. Assuming that library calls could be recognized, the
malware detector would still fail to identify the malicious
code. This is because the signature needs to ensure that the
same parameter pFile is used in both calls. In our worm
samples, this parameter was stored as a local variable on the
stack. Again, using data location obfuscation, we can hide
the value of the offset that is used together with the base
pointer register to access this local variable. As a result, the
static analysis tool cannot verify that the same parameter is
actually used for both library calls, and detection fails.

Semantics-Aware Malware Detection: Another system
that uses code templates instead of patterns to specify mali-
cious code was presented in [3]. The first problem clearly is
the dependency on IDA Pro, which produces incorrect dis-
assembly output when confronted with control flow obfus-
cation. A second problem is the dependency of some code
templates (or semantic signatures) on the fact that certain
constants must be recognized as equivalent. Consider the
template that specifies a decryption loop, which describes
the behavior of programs that unpack or decrypt themselves
to memory. According to [3], such a template consists of
“(1) a loop that processes data from a source memory area
and writes data to a destination memory area, and (2) a
jump that targets the destination area.” Clearly, the detector
must be able to establish a relationship between the memory
area where the code is written to and the target of the jump.
However, when using data location obfuscation, the detec-
tor cannot statically determine where data is written to, and
by using obfuscated jumps, it also cannot link this memory
area with the target of the control flow instruction. Finally,
semantic signatures can make use of define-use chains to
link the location where a variable is set and the location
where it is used. By using data usage obfuscation, however,
such define-use chains can be broken.

4.2 Transformation Robustness

In this section, we discuss the robustness of the applied
modifications as well as their size and performance impact.
When testing whether obfuscation was successful, one faces

7



the problem of test coverage. That is, it is not trivial to
demonstrate that the obfuscated program behaves exactly
like the original one. Because we operate directly on bi-
naries, our biggest challenge is the correct distinction be-
tween code and data regions. When the disassembly step
confuses code and data, addresses are updated incorrectly
and the program crashes. We observed that disassembler
errors quickly propagate through the program. Thus, when-
ever the binary rewriting fails, the obfuscated programs typ-
ically crash quickly. On the other hand, once an obfuscated
application was running, we observed few problems during
the more extensive tests we conducted. Thus, the mere fact
that a program can be launched provides a good indication
for the success of the transformation process. Of course,
this is no guarantee for the correctness of the obfuscation
process in general.

Linux Binaries In general, rewriting ELF binaries for
Linux works very well. Our first experiment was performed
on the GNU coreutils. This software package consists of
93 applications that can be found on virtually every Linux
machine. Part of the coreutils package is a test script that
performs 210 checks on various applications. To assess the
robustness of our transformations, we rewrote all 93 ap-
plications using all obfuscation transformations introduced
previously. We then ran the test script, and all 210 checks
were passed without problems.

As a second experiment, we obfuscated all applications
in the /usr/bin/ directory on a machine running Ubuntu
Linux 5.10. For this test, we rewrote 774 applications.
When manually checking these applications, we recorded
eleven programs that crashed with a segmentation fault.
Among these programs were large, complex applications
such as Emacs and Evolution or the linker. Of those pro-
grams that were successfully rewritten, we extensively used
and tested applications such as the instant messenger gaim
(806 KB), vim (1,074 KB), xmms (991 KB) and the Opera
web browser (12,059 KB).

Windows Binaries The set of programs that we used for
testing Windows executables consisted of twelve executa-
bles selected from the %System% directory, and the Inter-
net Explorer. The selected applications were both GUI and
command-line programs and represent a comprehensive set
of applications, ranging from system utilities (ping) to edi-
tors (NotePad) and games (MS Hearts). After obfuscation
and manual testing of their functionality, we could not iden-
tify any problems for eleven of the thirteen applications.

One of those two applications that worked only partially
was the Windows Calculator. When our binary rewriting
tool processes the calculator, an exception handler is not
patched correctly. This causes a jump to an incorrect ad-
dress whenever an exception is raised. That is, the obfus-
cated program calculates correctly. However, when a divi-
sion by zero is executed, the application crashes. The sec-

ond application that could not be obfuscated properly was
the Clipboard. This application starts and can be used to
copy text between windows. Unfortunately, when a file is
copied to the Clipboard, the application appears to hang in
an infinite loop.

4.3 Size and Performance

Typically, the most important goal when obfuscating a
binary is to have it resist analysis, while size and perfor-
mance considerations are only secondary. Nevertheless, to
be usable in practice, the increase in size or loss in perfor-
mance cannot be completely neglected.

We measured the increase of the code size when obfus-
cating the Linux binaries under /usr/bin. As the obfus-
cation transformations are applied to Windows and Linux
executables in a similar fashion, the results for PE files are
comparable. For the Linux files, the average increase of
the code size was 237%, while the maximum increase was
471%, when we only used the simple loops for hiding con-
stant values. When we used code that evaluates 3SAT for-
mulas, the size of the binaries increased significantly more.
For example, when using large 3SAT instances with more
than 200 clauses, the code size sometimes increased by a
factor as large as 30. Of course, when performing obfus-
cation, one can make a number of trade-offs to reduce the
code size, for example, by sparse usage of the most space
consuming transformations. However, even when applying
the full range of obfuscation methods, a malware author will
hardly be deterred by a huge size increase of his program.

During obfuscation, single instructions are frequently re-
placed by long code sequences. Nevertheless, the overall
runtime of the obfuscated binaries did not increase dramati-
cally, and we observed no noticeable difference for applica-
tions such as Opera or Internet Explorer. We then performed
a series of micro-benchmarks with CPU-intense programs
(such as grep, md5sum and zip) and found an average in-
crease in runtime of about 50%. In the worst case, we ob-
served a runtime that almost doubled, which is acceptable in
many cases (especially for malware that is running on some-
one else’s computer). With regards to performance, code
that evaluates unsatisfiable 3SAT formulas is not slower
than the simple opaque constants. The reason is that for
nearly all random inputs, only very few clauses have to be
considered before it is clear that the given input does not
satisfy the 3SAT instance. On average, we observed that
less than 7 clauses were evaluated before the constant can
be determined. Again, we want to stress that performance
is not a huge issue for most malicious programs.

8



4.4 Possible Countermeasures

In this paper, we describe techniques that make binaries
more resistant to static analysis. Such techniques have not
been encountered in the wild yet. However, it is well-known
that malware authors are constantly working on the creation
of more effective obfuscation and evasion schemes. Thus,
we believe that it is important to explore future threats to be
able to develop defenses proactively.

One possibility to counter our presented scheme is to flag
programs as suspicious when they exhibit apparent signs of
obfuscation. For example, when our control flow transfor-
mations are applied, the resulting code will contain many
return instructions, but no call statements. Hence, even
though the code cannot be analyzed precisely, it could be
recognized as malicious. Unfortunately, when flagging ob-
fuscated binaries as malicious, false positives are possible.
The reason is that obfuscation may also be used for legiti-
mate purposes, for example, to protect intellectual property.

A more promising approach when analyzing obfuscated
binaries is to use dynamic techniques. As a matter of fact,
most obfuscation transformations become ineffective once
the code is executed. Hence, we believe that future mal-
ware analysis approaches should be centered around dy-
namic techniques that can effectively analyze the code that
is run.

5 Related Work

The two areas that are most closely related to our work
are code obfuscation and binary rewriting. Code obfus-
cation describes techniques to make it difficult for an at-
tacker to extract high-level semantic information from a
program [6, 20]. This is typically used to protect intellectual
property from being stolen by competitors or to robustly
embed watermarks into copyrighted software [5]. Similar
to our work, researchers proposed obfuscation transforma-
tions that are difficult to analyze statically. One main differ-
ence to our work is that these transformations are applied to
source code. Source code contains rich program informa-
tion that make it easier to apply obfuscating operations.

In [6], opaque predicates were introduced, which are
boolean expressions whose truth value is known during ob-
fuscation time but difficult to determine statically. The idea
of opaque predicates has been extended in this paper to
hide constants, the basic primitive on which our obfusca-
tion transformations rely. The one-way translation process
introduced in [19, 20] is related to our work as it attempts to
obscure control flow information by converting direct jumps
and calls into corresponding indirect variants. The differ-
ence is the way control flow obfuscation is realized and the
fact that we also target data location and data usage infor-
mation. An obfuscation approach that is orthogonal to the

techniques outlined above is presented in [13]. Here, the
authors exploit the fact that it is difficult to distinguish be-
tween code and data in x86 binaries and attempt to attack
directly the disassembly process.

We are aware of two other pieces of work that deal with
program obfuscation on the binary level. In [2], the authors
developed a simple, binary obfuscator to test their malware
detector. This obfuscator can apply transformations such
as code reordering, register renaming, and code insertion.
However, based on their description, a more powerful static
analyzer such as the one introduced by the same authors
in [3] can undo these obfuscations. In [21], a system is pro-
posed that supports opaque predicates in addition to code
reordering and code substitution. However, the control flow
information is not obscured, and data usage and location in-
formation can be extracted. Thus, even if the opaque pred-
icate cannot be resolved statically, a malware detector can
still analyze and detect the branch that contains the opera-
tions of the malicious code.

In [1], the authors discussed the theoretical limits of pro-
gram obfuscation. In particular, they prove that it is impos-
sible to hide certain properties of particular families of func-
tions using program obfuscation. In our work, however, we
do not try to completely conceal all properties of the obfus-
cated code. Instead, we obfuscate the control flow between
functions and the location of data elements and make it hard
for static analysis to undo the process.

Besides program obfuscation, binary rewriting is the sec-
ond area that is mostly related to this research. Static bi-
nary rewriting tools are systems that modify executable pro-
grams, typically with the goal of performing (post-link-
time) code optimization or code instrumentation. Because
these tools need to be safe (i.e., they must not perform mod-
ifications that break the code), they require relocation in-
formation to distinguish between address and non-address
constants. To obtain the required relocation information,
some tools only work on statically linked binaries [15], de-
mand modifications to the compiler tool-chain [14], or re-
quire a program database (PDB) [17, 18]. Unfortunately,
relocation information is not available for malicious code in
the wild, thus, our approach sacrifices safety to be able to
handle binaries for which no information is present.

Besides those tools that require relocation information,
a few systems have been proposed that can process binary
programs without relying on additional program informa-
tion [12, 4]. These systems operate on RISC binaries, which
is a significantly simpler task than working on the com-
plex x86 instruction set. Finally, binary rewriting has al-
ready been introduced by malicious code as a means to
evade detection by virus scanners. The infamous Mistfall
engine [22] is capable of relocating instructions of a pro-
gram that is to be infected. Interestingly, the author of the
Mistfall engine states that his rewriting algorithm fails to

9



correctly patch the code for jump tables that are very com-
mon in windows binaries. In our implementation, we use
a heuristic that allows us to correctly rewrite many binaries
for which the Mistfall algorithm produces incorrect code.

6 Conclusions

In this paper, our aim was to explore the odds for a mal-
ware detector that employs powerful static analysis to detect
malicious code. To this end, we developed binary program
obfuscation techniques that make the resulting binary diffi-
cult to analyze. In particular, we introduced the concept of
opaque constants, which are primitives that allow us to load
a constant into a register so that the analysis tool cannot de-
termine its value. Based on opaque constants, we presented
a number of obfuscation transformations that obscure pro-
gram control flow, disguise access to variables, and block
tracking of values held in processor registers.

To be able to assess the effectiveness of such an ob-
fuscation approach, we developed a binary rewriting tool
that allows us to perform the necessary modifications. Us-
ing the tool, we obfuscated three well-known worms and
demonstrated that neither virus scanners nor a more ad-
vanced static analysis tool based on model checking could
identify the transformed programs.

While it is conceivable to improve static analysis to han-
dle more advanced obfuscation techniques, there is a funda-
mental limit in what can be decided statically. In particular,
we presented a construct based on the 3SAT problem that is
provably hard to analyze. Limits of static analysis are of less
concern when attempting to find bugs in benign programs,
but they are more problematic and worrisome when ana-
lyzing malicious, binary code that is deliberately designed
to resist analysis. In this paper, we demonstrate that static
techniques alone might not be sufficient to identify mal-
ware. Indeed, we believe that such approaches should be
complemented by dynamic analysis, which is significantly
less vulnerable to code obfuscating transformations.

Acknowledgments

This work was supported by the Austrian Science Foun-
dation (FWF) under grants P18368, P18764, P18157 and by
the Secure Business Austria competence center.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (Im)possibility of Obfuscat-
ing Programs. In Advances in Cryptology (CRYPTO), 2001.

[2] M. Christodorescu and S. Jha. Static Analysis of Executables
to Detect Malicious Patterns. In Usenix Security Symposium,
2003.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant.
Semantics-aware Malware Detection. In IEEE Symposium on
Security and Privacy, 2005.

[4] C. Cifuentes and M. V. Emmerik. UQBT: Adaptable Binary
Translation at Low Cost. IEEE Computer, 33(3), 2000.

[5] C. Collberg and C. Thomborson. Software Watermarking:
Models and Dynamic Embeddings. In ACM Symposium on
Principles of Programming Languages, 1999.

[6] C. Collberg, C. Thomborson, and D. Low. Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs. In Con-
ference on Principles of Programming Languages (POPL),
1998.

[7] Data Rescure. IDA Pro: Disassembler and Debugger. http:
//www.datarescue.com/idabase/, 2006.

[8] L. Gordon, M. Loeb, W. Lucyshyn, and R. Richardson. Com-
puter Crime and Security Survey. Technical report, Computer
Security Institute (CSI), 2005.

[9] R. Karp. Reducibility Among Combinatorial Problems. In
Complexity of Computer Computations, 1972.

[10] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. De-
tecting Malicious Code by Model Checking. In Conference
on Detection of Intrusions and Malware & Vulnerability As-
sessment (DIMVA), 2005.

[11] C. Kruegel, W. Robertson, and G. Vigna. Detecting Kernel-
Level Rootkits Through Binary Analysis. In Annual Com-
puter Security Application Conference (ACSAC), 2004.

[12] J. Larus and E. Schnarr. EEL: Machine-Independent Exe-
cutable Editing. In Conference on Programming Language
Design and Implementation (PLDI), 1995.

[13] C. Linn and S. Debray. Obfuscation of Executable Code to
Improve Resistance to Static Disassembly. In ACM Con-
ference on Computer and Communications Security (CCS),
2003.

[14] L. V. Put, D. Chanet, B. D. Bus, B. D. Sutter, and K. D.
Bosschere. Diablo: A reliable, retargetable and extensible
link-time rewriting framework. In IEEE International Sym-
posium On Signal Processing And Information Technology,
2005.

[15] B. Schwarz, S. Debray, and G. Andrews. PLTO: A Link-
Time Optimizer for the Intel IA-32 Architecture. In Work-
shop on Binary Translation (WBT), 2001.

[16] B. Selman, D. Mitchell, and H. Levesque. Generating hard
satisability problems. Artificial Intelligence, 81(1 – 2), 1996.

[17] A. Srivastava and A. Eustace. Atom: A system for build-
ing customized program analysis tools. In Conference on
Programming Language Design and Implementation (PLDI),
1994.

[18] A. Srivastava and H. Vo. Vulcan: Binary transformation
in distributed environment. Technical report, Micorosft Re-
search, 2001.

[19] C. Wang. A Security Architecture for Survivability Mecha-
nisms. PhD thesis, University of Virginia, 2001.

[20] C. Wang, J. Hill, J. Knight, and J. Davidson. Protection of
Software-Based Survivability Mechanisms. In International
Conference on Dependable Systems and Networks (DSN),
2001.

[21] G. Wroblewski. General Method of Program Code Obfusca-
tion. PhD thesis, Wroclaw University of Technology, 2002.

[22] Z0mbie. Automated reverse engineering: Mistfall engine.
VX heavens, http://vx.netlux.org/lib/vzo21.
html, 2006.

10


