
Secure Input for Web Applications

Martin Szydlowski, Christopher Kruegel, Engin Kirda
Secure Systems Lab

Technical University Vienna
Vienna, Austria

{msz,chris,ek}@seclab.tuwien.ac.at

Abstract

The web is an indispensable part of our lives. Every day,
millions of users purchase items, transfer money, retrieve
information and communicate over the web. Although the
web is convenient for many users because it provides any-
time, anywhere access to information and services, at the
same time, it has also become a prime target for miscreants
who attack unsuspecting web users with the aim of making
an easy profit. The last years have shown a significant rise
in the number of web-based attacks, highlighting the impor-
tance of techniques and tools for increasing the security of
web applications.

An important web security research problem is how to
enable a user on an untrusted platform (e.g., a computer
that has been compromised by malware) to securely trans-
mit information to a web application. Solutions that have
been proposed to date are mostly hardware-based and re-
quire (often expensive) peripheral devices such as smart-
card readers and chip cards. In this paper, we discuss some
common aspects of client-side attacks (e.g., Trojan horses)
against web applications and present two simple techniques
that can be used by web applications to enable secure user
input. We also conducted two usability studies to examine
whether the techniques that we propose are feasible.

1 Introduction

Since the advent of the web, our lives have changed irre-
versibly. Web applications have quickly become the most
dominant way to provide access to online services. For
many users, the web is easy to use and convenient because it
provides anytime, anywhere access to information and ser-
vices. Today, a significant amount of business is conducted
over the web, and millions of web users purchase items,
transfer money, retrieve information and communicate via
web applications.

Unfortunately, the success of the web and the lack of

technical sophistication and understanding of many web
users have also attracted miscreants who aim to make easy
financial profits. The attacks these people have been been
launching range from simple social engineering attempts
(e.g., using phishing sites) to more sophisticated attacksthat
involve the installation of Trojan horses on client machines
(e.g., by exploiting vulnerabilities in browsers in so-called
drive-by attacks[19]).

An important web security research problem is how to
effectively enable a user who is running a client on an un-
trusted platform (i.e., a platform that may be under the con-
trol of an attacker) to securely communicate with a web ap-
plication. More precisely, can we ensure theconfidentiality
andintegrityof sensitive data that the user sends to the web
applicationeven ifthe user’s platform is compromised by an
attacker? Clearly, this is an important, but difficult problem.

Ensuring secure input to web applications is especially
relevant for online services such as banking applications
where users perform money transfers and access sensitive
information such as credit card numbers. Although the
communication between the web client and the web ap-
plication is typically encrypted using technologies such as
Transport Layer Security [9] (TLS) to thwart sniffing and
man-in-the-middle attacks, the web client is the weakest
point in the chain of communication. This is because it runs
on an untrusted platform, and thus, it is vulnerable to client-
side attacks that are launched locally on the user’s machine.
For example, a Trojan horse can install itself as a browser-
plugin and then easily access, control, and manipulate all
sensitive information that flows through the browser.

Malware that manipulates bank transactions already ap-
pears in the wild. This year, for example, several Aus-
trian banks were explicitly targeted by Trojan horses that
were used by miscreants to perform illegal money transac-
tions [13, 21]. In most cases, the victims did not suspect
anything, and the resulting financial losses were significant.
Note that even though the costs of such an attack are cov-
ered by insurance companies, it can still easily harm the
public image of the targeted organization.



A number of solutions have been proposed to date to
enable secure input on untrusted platforms for web-based
applications. The majority of these solutions are hardware-
based and require integrated or external peripheral devices
such as smart-card readers [10, 23] or mobile phones [15].
Such hardware-based solutions have several disadvantages.
They impose a financial and organizational burden on users
and on service providers, they eliminate the anytime, any-
where advantage of web applications and they often depend
on the integrity of underlying software components which
may be replaced with tampered versions [12, 24, 25].

In this paper, we discuss some common aspects of client-
side attacks against web applications and present two sim-
ple techniques that can be used by web applications to en-
able secure input, at least for a limited quantity of sensitive
information (such as financial transaction data). The main
advantage of our solutions is that they do not require any in-
stallation or configuration on the user’s machine. Addition-
ally, in order to evaluate the feasibility of our techniquesfor
mainstream deployment, we conducted usability studies.
The main contributions of this paper are as follows:

• We present a technique that extends graphical input
with CAPTCHAs [3] to protect theconfidentialityand
integrityof the user input even when the user platform
is under the control of anautomatedattack program
(such as a Trojan horse).

• We present a technique that makes use of confirmation
tokens that are bound to the sensitive information that
the user wants to transmit. This technique helps to pro-
tect theintegrity of the user input even when the user
platform is under the control of the attacker.

• We present usability studies that demonstrate that the
two techniques we propose in this paper are feasible in
practice.

This paper is structured as follows: Section 2 gives an
example of a typical client-side attack. Section 3 presents
our techniques to enable secure input for web applications.
Section 4 presents the results of our user studies and and
discusses limitations of our approach. Section 5 provides
an overview of related work. Finally, Section 6 concludes
the paper.

2 A Typical Client-Side Attack

In a typical client-side web attack, the aim of the at-
tacker is to take control of the user’s web client in order
to manipulate the client’s interaction with the web applica-
tion. Such an attack typically consists of three phases. In
the first phase, the attacker’s objective is to install malware
on the user’s computer. Once this has been successfully

achieved, in the second phase, the installed malware mon-
itors the user’s interaction with the web application. The
third phase starts once the malware detects that a security-
critical operation is taking place and attempts to manipulate
the flow of sensitive information to the web application to
fulfill the attacker’s objectives.

Imagine, for example, that John Smith receives an email
with a link to a URL. This email has been sent by attackers
to thousands of users. John is naive and curious, so he clicks
on the link. Unfortunately, he has not regularly updated his
browser (Internet Explorer in this case), which contains a
serious parsing-related vulnerability that allows malicious
code to be injected and executed on his system just by vis-
iting a hostile web site. As a result, a Trojan horse is au-
tomatically installed on John’s computer when his browser
parses the contents of the web page.

The Trojan horse that the attackers have prepared is a
Browser Helper Object (BHO) for the Internet Explorer
(IE). This BHO is automatically loaded every time IE
is started. With the BHO, the attackers have access to
all events (i.e., interactions) and HTML components (i.e.,
DOM objects) within the browser. Hence, they can easily
check which web sites the user is surfing, and they can also
modify the contents of web pages. In our example, the at-
tacker’s are interested in web sessions with a particular bank
(the Bank Austria).

Whenever John is online and starts using the Bank Aus-
tria online banking web application, the Trojan browser-
plugin is triggered. It then starts analyzing the contents of
the bank web pages. When it detects that he is about to
transfer money to another account, it silently modifies the
target account number.

Note that the imaginary attack we described previously
is actually very similar to the attacks that have been recently
targeting Austrian banks. Clearly, there can be many tech-
nical variations of such an attack. For example, instead of
using a BHO, the attackers could also inject Dynamic Link
Libraries (DLLs) into running applications or choose to in-
tercept and manipulate Operating System (OS) calls.

The key observation here is that the online banking web
application has no way to determine whether the client it
is interacting with has been compromised. Furthermore,
when the client has indeed been compromised, all security
precautions the web application can take to create a secure
communication channel to the client (e.g., TLS encryption)
fail. That is, the web application cannot determine whether
it is directly interacting with a user, or with a malicious ap-
plication performing illegitimate actions on behalf of a user.

3 Our Solution

As described in the previous section, the web applica-
tion must assume that the user’s web client (and platform)



is under the control of an attacker. There are two aspects of
the communication that an attacker could compromise: the
confidentiality, or the integrity of input sent from the client
to the web application. The confidentiality of the input is
compromised when the attacker is able to eavesdrop on the
entered input and intercept sensitive information. Analo-
gously, the integrity of the input is compromised when the
attacker is able to tamper, modify, or cancel the input the
user has entered.

As far as the user is considered, there are cases in which
the integrity of input may be more important than its con-
fidentiality. For example, as described in Section 2, only
when the attacker can effectivelymodifythe account num-
ber that has been typed, an illegitimate money transaction
causing financial damage can be performed.

In this section, we present two techniques that web appli-
cations can apply to protect sensitive user input. We assume
a threat model in which the attacker has compromised a ma-
chine and installed malicious code. This code has complete
control of the client’s machine, but must perform its task in
an autonomous fashion (i.e., without being able to consult
a human). Our solution are implemented on the server and
are client-independent. The first solution we discuss aims
to protect the integrity of user input. The second solution
we discuss aims to protect the confidentialityand integrity
of the user input, but only againstautomated attacks(i.e.,
the adversary is not a human).

3.1 Solution 1: Binding Sensitive Infor-
mation to Confirmation Tokens

3.1.1 Overview

The first solution is based onconfirmation tokens. In princi-
ple, the concept of a confirmation token is similar to a trans-
action number (i.e., TANs) commonly used in online bank-
ing. TANs are randomly generated numbers that are sent to
customers as hardcopy letters via regular (snail) mail. Each
time a customer would like to confirm a transaction, she se-
lects a TAN entry from her hardcopy list and enters it into
the web application. Each TAN entry can be used only once.
The idea is that an attacker cannot perform transactions just
by knowing a customer’s user login name and password.
Obviously, TAN-based schemes rely on the assumption that
an attacker will not have access to a user’s TAN list and
hence, be able to perform illegitimate financial transactions
at a time of his choosing.

Unfortunately, TAN-based schemes are easily defeated
when an attacker performs a client-side attack (e.g., usinga
Trojan horse as described in Section 2). Furthermore, such
schemes are also vulnerable to phishing attempts in which
victims are prompted to provide one (or more) TAN num-
bers on the phishing page. The increasing number of suc-
cessful phishing attacks prompted some European banks to

switch to so calledindexed TAN (i-TAN)schemes, where the
bank server requests a specific i-TAN for each transaction.
While this partially mitigated the phishing threat, i-TANs
are as vulnerable to client-side attacks as traditional TANs.

In general, the problem with regular transactions num-
bers is that there is no relationship between the data that is
sent to the web application and the (a-priori shared) TANs.
Thus, when the bank requests a certain TAN, malicious
code can replace the user’s input without invalidating this
transaction number. To mitigate this weakness and to en-
force integrity of the transmitted information,we propose
to bind the information that the user wants to send to our
confirmation token. In other words, we propose to use con-
firmation tokens that (partially) depend on the user data.
Note that when using confirmation tokens, our focus is not
the protection of the confidentiality, but the integrity of this
sensitive information.

3.1.2 Details

Imagine that an application needs to protect the integrity of
some input datax. In our solution, the idea is to specify
a functionf(.) that the user is requested to apply to the
sensitive inputx. The user then submits both her input data
x and, as a confirmation token,f(x).

Suppose that in an online banking scenario, the bank re-
ceives the account numbern together with a confirmation
tokent from the user. The bank will then applyf(.) to n

and verify thatf(n) = t. If the valuex, which the user
desires to submit, is the same as the inputn that the bank
receives (x = n), then the computation off(n) by the bank
will equal the computation off(x) by the user. That is,
f(x) = f(n) holds. If, however, the user input is modified,
then the bank’s computation will yieldf(n) 6= f(x), and
the bank will know that the integrity of the user’s input is
compromised.

Any important question that needs to be answered is how
f(.) should be defined. Clearly,f(.) has to be defined in a
way so that malicious software installed on a user’s machine
cannot easily compute it. Otherwise, the malware could au-
tomatically computef(x) for any inputx that it would like
to send, and the proposed solution fails. Also,f(.) has to
remain secret from the attacker.

We propose two schemes for computingf(x). For both
schemes, the user will require acode book. This code book
will be delivered via regular mail, similar to TAN letters
described in the previous section. In the first scheme, called
token calculation, the code book contains a collection of
simple algorithms that can be used by users tomanually
compute confirmation tokens (similar to the obfuscation and
challenge-response idea presented in [4] for secure logins).
All algorithms are based on the input that the user would
like to transmit.



Figure 1. Excerpt from our sample token cal-
culation code book.

Suppose that the user has entered the account number
980.243.276, but a Trojan horse has actually sent the ac-
count number 276.173.862 to the bank (unnoticed by the
user). In the first scheme, the bank would randomly choose
an algorithm from the user’s code book. Clearly, in order
to make the scheme more resistant against attacks, a dif-
ferent code book would have to be created for each user
(just like different TANs are generated for different users).
Figure 1 shows an excerpt from our sample token calcula-
tion code book. Suppose the bank asks the user to apply
algorithm ID 6 to the target account number. That is, the
user would have to multiply the 4th and 8th digits of the
account number and add 17 to the result. Hence, the user
would type 31 as the confirmation token. The bank, how-
ever, would compute 23 and, because these confirmation
values do not match, it would not execute the transaction,
successfully thwarting the attack.

Figure 2. The token lookup scheme illus-
trated.

For our second scheme to implementf(.), calledtoken
lookup, users are not required to perform any computation.
In this variation, the code book would consist of a large

number of random tokens that are organized inpages. The
bank and the user previously and secretly agree onwhich
digits of the account number are relevant for choosing the
correct page. The bank then requests the user to confirm
a transaction by asking her to enter the value of aspecific
token on that page. For example, suppose that the relevant
account digits are 2 and 7 for user John and that the bank
asks John to enter the token with the ID 20. In this case,
John would determine therelevantcode page by combining
the 2nd and 7th digits of the account number and look up the
token on that page that has the ID 20 (Figure 2). Suppose
that the user is faced with the same attack that we discussed
previously. That is, the user enters 980.243.276, but the
malicious application sends 276.173.862 to the bank. In
this case, the user would look up the token with ID 20 on
page 82, while the bank would consult page 78. Thus, the
transmitted token would not be accepted as valid.

3.1.3 Security Analysis

The security of the confirmation-token-based solutions re-
lies on the assumption that the functionf(.) remains secret.
For the token computation, this implies that the algorithms
the bank asks the user to apply are not revealed and can-
not be deduced from the account number and the computed
confirmation token. The lookup scheme can only be com-
promised when both the relevant digits for code lookups and
the contents of the code book are disclosed.

Note that it is possible in theory that some digits of the
target account of the attacker correspond to the digits in the
target account number of the user. Hence, it could be pos-
sible that an algorithm is chosen by the bank that computes
thesameconfirmation token for both account numbers, or
that both account numbers produce the same page number
for the lookup scheme. The probability for such an event is
1-in-10n, with n being the number or relevant digits.

Another possibility to circumvent our schemes is trying
to guess the right confirmation token. In our prototype im-
plementation, the calculated token can be two to four digits
long, giving a 1-in-11,100 chance of guessing the right one
(note that10 and010 are two different tokens). For the
lookup scheme, we used 6-digit alphanumeric tokens. The
chance to guess the right one is1-in-366.

3.2 Solution 2: Using CAPTCHAs for Se-
cure Input

3.2.1 Overview

Graphical input is used by some banks and other institutions
to prevent eavesdropping of passwords or PINs. Instead of
using the keyboard to enter sensitive information, an image
of a keypad is displayed, and the user enters data by clicking
on the corresponding places in the image. Unfortunately,



these schemes are typically very simple. For example, the
letters and numbers are always located at the same window
coordinates, or the fonts can be easily recognized with op-
tical character recognition (OCR). As a result, malware can
still recover the entered information.

The basic idea of the second solution is to extend graphi-
cal input with CAPTCHAs [3]. A CAPTCHA, which stands
for Completely Automated Public Turing test to tell Com-
puters and Humans Apart, is a type of challenge-response
test that is used in computing to determine whether or not
the user is human. Hence, a CAPTCHA test needs to be
solvable by humans, but not solvable (or very difficult to
solve) for computer applications. CAPTCHAs are widely
employed for protecting online services against automated
(mis)use by malicious programs or scripts. For example,
such programs may try to influence online polls, or regis-
ter for free email services with the aim of sending spam.
Figure 3 shows a graphical CAPTCHA generated by Yahoo
when a user tries to subscribe to its free email service.

Figure 3. A graphical CAPTCHA generated by
Yahoo.

An important characteristic of a CAPTCHA is that it has
to be resistant to attacks. That is, it should not be possi-
ble for an algorithm to automatically solve the CAPTCHA.
Graphical CAPTCHAs, specifically, need to be resistant to
optical character recognition [18]. OCR is used to trans-
late images of handwritten or typewritten text into machine-
editable text. To defeat OCR, CAPTCHAs generally use
background clutter (e.g., thin lines, colors, etc.), a large
range of fonts, and image transformations. Such properties
have been shown to make OCR analysis difficult [3].

Usually, the algorithm used to create a CAPTCHA is
made public. The reason for this is that a good CAPTCHA
needs to demonstrate that it can only be broken by advances
in OCR (or general pattern recognition) technology and not
by the discovery of a “secret” algorithm. Note that although
some commonly used CAPTCHA algorithms have already
been defeated (e.g., see [17]), a number of more sophisti-
cated CAPTCHA algorithms [3, 7] are still considered re-
sistant against OCR and are currently being widely used by
companies such as Yahoo and Google.

3.2.2 Details

Although CAPTCHAs are frequently used to protect online
services against automated access, to the best of our knowl-

edge, no one has considered their use to enable secure input
to web applications.

In our solution, whenever a web application requires to
protect the integrity and confidentiality of user information,
it generates a graphical input field with randomly placed
CAPTCHA characters. When the user wants to transmit
input, she simply uses the mouse to click on the area that
corresponds to the first character that should be sent. Click-
ing on the image generates a web request that contains the
coordinates on the imagewhere the user has clicked with
the mouse. The key idea here is thatonly the web applica-
tion knows which character is located at these coordinates.
After the first character is transmitted, the web application
generates another image with a different placement of the
characters, and the process is repeated. By using CAPT-
CHAs to communicate with the human user, a web applica-
tion can mitigate client-side attacks that intercept or mod-
ify the sensitive information that users type. Because the
CAPTCHA characters cannot be identified automatically, a
malware program has no way to know which information
was selected by the user, nor does it have a way to mean-
ingful select characters of its own choosing.

Figure 4. A generated CAPTCHA for enabling
secure user input.

Figure 4 depicts a screenshot of our prototype CAPT-
CHA input element. In this example, the user would like to
securely enter her bank account number 980.343.276. It can
be seen that the web application has generated digits from
0 to 9 that are randomly distributed on the upper half of the
image. To transmit the account information, the user locates
the desired numbers on each generated image and sequen-
tially enters the account number that she would like to send.
In order to give immediate feedback to the user about the
number she has just entered, a part of the CAPTCHA can
be used to reflect back the input. In our prototype imple-
mentation, we chose to use the bottom half of the CAPT-
CHA to give feedback to the user about the number she has
just entered (see the ellipse in Figure 4; the first three digits
have already been entered). Of course, one can also allow



the user to modify the input she has entered by including in-
put elements in the CAPTCHA that can be used for deleting
and editing.

3.2.3 Security Analysis

The security of the CAPTCHA-based solution is based on
the assumption that it is impossible (or sufficiently difficult)
for malicious software installed on the user’s machine to an-
alyze and identify the coordinates on the CAPTCHA where
the input values are located. Our solution also relies on
the presumption that we can adapt and integrate recent ad-
vances in CAPTCHA research and hence, match advances
in OCR research.

In order to successfully defeat our solution automati-
cally, the malicious software would need to identify the
mouse coordinates that it needs to send to the web appli-
cation. Suppose, for example, that a Trojan horse would
like to send the account number 276.273.862 to the bank
instead of the original account number 980.343.276 that the
user would like to enter. For each new CAPTCHA input
element, it would have to automatically identify the target
input value that it requires, intercept the user’s mouse click,
and simulate a mouse click of its own. In our example, the
Trojan would first have to identify the number 2 in the first
generated CAPTCHA, the number 7 on the second gener-
ated CAPTCHA, and so on.

Although algorithms exist that can make it sufficiently
difficult for software to solve CAPTCHAs automatically,
the main problem currently is that it may be possible to
relay CAPTCHAs to human operators who can then solve
them manually. In fact, some spammers have been using
this technique in real-life to defeat CAPTCHAs [26]. One
popular idea is to divert the CAPTCHA to another web site
where visitors willingly solve them because they believe
that they will access “free” adult content. Note, however,
that in the solution we propose, it is more difficult to deploy
an unsuspecting human operator to defeat the CAPTCHA.
That is, in our case, the required task is not simply reading
the CAPTCHA, but identifying input values sequentially.
Hence, a human operator would have to follow the input
that is being entered in real-time while the victim is enter-
ing this information during an online banking session.

The attackers could nevertheless deploy human op-
erators that indeed analyze and enter information on
CAPTCHA-based input elements. One can imagine, for
example, that the miscreants would employ and pay these
operators for their services. When human operators are in-
volved, the confidentiality of the input can be compromised,
since nothing will prevent an off-line analysis of the images
and click coordinates. However, an effective attack on the
integrity can only happen on-line (i.e., at the moment the
user attempts to enter the sensitive data). In this case, the

attackers would have to make sure that the communication
between the Trojan horses on the victims’ machines and
their human operators are reliable and fast. Furthermore,
they would also run the risk of being traced back if service
providers monitor network connections and detected Trojan
horses are analyzed for their behavior. Finally, to effectively
deceive the user, that part of the image that reflects the in-
put needs to be edited (to show the input the userintended
to make) before being displayed. Thus, we believe that the
CAPTCHA-based input solution we propose considerably
raises the difficulty bar for attackers and significantly in-
creases the costs of client-side attacks.

4 Evaluation

In Section 3, we discussed a number of possibilities an
attacker possesses to subvert our protection schemes. The
discussion showed that our system offers appealing secu-
rity properties even in the presence of powerful adversaries.
However, to be usable in practice, it is not sufficient that
a scheme is secure, but it is also necessary that it is easy
to understand and to use. To assess the ease-of-use of our
proposed protection mechanisms, we conducted two user
studies. We performed an initial small-scale study to iden-
tify major usability obstacles of our prototype implementa-
tion. Based on these initial experiences, we improved our
system and eventually conducted a larger user study to eval-
uate how suitable our protection mechanisms are to protect
online bank transactions.

To conduct the usability study, we implemented a simple
proof-of-concept online banking web application, where a
user can log in and perform (simulated) money transactions.
Our transaction functionality is similar to real-life online
banking web applications where the user is required to en-
ter a target account number, routing number and the amount
that is to be transferred. After entering the transaction de-
tails, the confirmation challenge is displayed. If the user
enters an invalid token, she has the chance to retry indefi-
nitely. At any point, the user has the chance to abort.

For the initial study, we recruited 16 participants with
diverse background and age. Each participant was asked to
log into our prototype bank site and carry out a number of
transactions. To this end, every user received a list of ten
transactions that she should perform. For each transaction,
the user was told to select one of the three available protec-
tion schemes, that is, the users had the choice between either
CAPTCHA input, token lookup, or token calculation.

On the login page, a help text (about 2 screen pages
long) was displayed that explained the usage of the new
protection methods. Initially, no additional informationwas
given. When a user failed to correctly perform a transac-
tion and gave up, the experimenter took on the role of a
customer support agent and was allowed to answer some



specific questions or to address a particular problem that
the subject encountered. For each protection technique, a
number of transactions were performed. We silently ob-
served the problems that subjects encountered before any
hints were given, and also after some support was provided.
At the end, we asked each person to rank the protection
mechanisms with regard to their personal feeling of ease-
of-use. Also, we were interested in suggestions that people
might have to improve their user experience.

The initial study yielded the following findings: The to-
ken lookup scheme was considered easiest, while token cal-
culation was the least favorite method for almost all users.
Problems with the latter resulted from difficulties of under-
standing the textual descriptions of the algorithms, but also
from frustrating miscalculations.

For the graphical input method, there was a negative cor-
relation between popularity and age, while participants with
a technical background generally had a better appreciation
for it. We concluded that the CAPTCHA input was “over-
featured.” The problem was a single, large input image that
contained several lines of input lumped together (one line
for each information needed for a transaction), as well as
navigation and editing elements. That proved to be confus-
ing for most users. Additionally, some participants reported
that the digits “1” and “7” were often hard to distinguish.

In general, we observed that, initially, most users had
difficulties to understand how our protection mechanisms
work. Nevertheless, after users overcame the initial obsta-
cles and developed some familiarity with a new technique,
they were typically able to carry out transactions swiftly
and with few problems. It became apparent that, instead
of a long introductory text, an (interactive) tutorial would
be preferable to introduce each method. Finally, we real-
ized that it makes little sense to compare the graphical input
directly with the token schemes; both approaches address
the same problem, but from a different angle.

For the second study, we redesigned out testing frame-
work to mitigate the previously identified issues. We re-
placed the written introduction with a tutorial where the user
was guided step-by-step through the first transaction with
every scheme. To improve token calculation, we attempted
to find more precise wording for the algorithm descriptions,
but we had to balance the verbosity and the length of the
instructions. Since we have concluded that graphical input
and confirmation tokens are independent, we have imple-
mented the methods to be used orthogonally. The user now
has the choice between threeconfirmationmethods: The
two novel token schemes presented in Section 3.1 as well as
the regular TAN method. Additionally, the user can activate
the CAPTCHA graphical input (Section 3.2) for entering
sensitive information. This allowed us to compare graphical
input with normal keyboard input. Note that token schemes
and the CAPTCHA-based input can be combined, for ex-

ample, by entering the account number via a CAPTCHA
and using a lookup token to confirm the transaction.

To address the issues specific to graphical input, we have
changed the user interface substantially. In particular, we
replaced the original input image with a set of images, each
displaying a single piece of information (such as account
number or amount). Clicking on such an image reveals the
graphical input panel. The panel contains only the digits,
while the editing elements are realized as buttons. The user
input is still reflected at the bottom of the input image, but
the displayed digits are also valid input elements now (digits
in the image that did not “respond” to clicks were often a
source of confusion).

For the second study, we were able to recruit 64 par-
ticipants. Again, we tried to accommodate diverse back-
grounds and age groups. We included only people with (at
least) basic computer skills and good knowledge of the Ger-
man language, to prevent computer and language-related
problems from influencing the outcome. The participants
were between 18 and 50 years of age, 59% had some sort
of technical education, and 43% declared their computer
skills to be above average. Finally, 84% had previous online
banking experience.

At the beginning, each participant was issued a task list,
containing the login data and a list of twelve transactions,as
well as the code books/TAN lists required for the confirma-
tion schemes. The experimenter explained the task briefly,
without giving any specifics, but pointing to the tutorial in-
stead. Then, the users were left alone and we observed their
actions unobtrusively. The tutorial consists of three trans-
actions. The first introduces the CAPTCHA input and TAN
confirmation, while the other two present the token lookup
and token computation schemes, respectively. If, during the
tutorial, a user asked for assistance, the experimenter would
take the role of a customer support agent. In addition to the
three introductory transactions, the task list contained nine
additional transactions, which had to be carried out using
the specified input and confirmation methods (in different
combinations). From the overall twelve transactions, six
were carried out using graphical input. Of the three con-
firmation schemes (TAN, token lookup, and token calcula-
tion), each had to be performed four times.

After completing all transactions, the users were pointed
to an on-line questionnaire, with questions concerning the
general difficulty of each method, as well as method-
specific questions. In particular, we asked to rate the
ease-of-use of each method (independently), providing four
grades ranging from “easy” to “very hard.” Moreover, we
wanted to know if a task became easier with time, with the
choices being “yes,” “partially,” and “no.” The answers are
listed in Table 1. In this table, the “Total” columns list the
absolute difficulties of each scheme. The adjacent columns
break down the relative improvement for each group. For



Method Graphical Input Token Lookup Token Calculation
Improvement Total Yes Part. No Total Yes Part. No Total Yes Part. No
Difficulty

Easy 21 15 2 4 44 28 4 12 12 7 1 4
Medium 39 30 5 4 20 15 3 2 39 18 14 7
Hard 3 1 2 0 0 0 0 0 13 3 3 7
Very hard 1 0 1 0 0 0 0 0 0 0 0 0

Total 64 46 10 8 64 43 7 14 64 28 18 18

Table 1. Breakdown of the difficulties and learning curves re ported by the study participants.

example, of the 39 users that considered the graphical input
to be medium difficult, 30 found that this input method be-
came easier after getting used to it. It can be seen that only
few consider any of the methods to be hard, with token cal-
culation being rated least favorably. An important finding is
that of those who did not consider the methods to be easy
initially, a majority reported that the experience improved
over time.

To see if the users’ responses to the questionnaire coin-
cide with actual behavior, we compared the questionnaire
results with the logs recorded during our study. Indeed, for
the graphical input method, we observed that the input du-
ration and input errors (i.e., the user missed the digit or en-
tered a wrong digit) decreased with time. The average time
to enter a 9-digit account number decreases from about 56
seconds to about 23 seconds. The average click interval
(i.e., the time it takes to find the next desired digit in the
image) goes down from the initial 3.8 seconds to 2.1 sec-
onds and can be as low as 1.5 seconds for certain numbers.
For the confirmation schemes, we recorded for each user
and transaction the number of token resubmissions until the
transaction was completed successfully. Also in this case,
we observed that the number of necessary retries decreased
over time. For the token lookup method, the average num-
ber of retries decreased from 0.21 for the first attempt to
0.05 after three rounds. The decrease for the token calcula-
tion scheme was from initially 0.68 retries down to 0.24.

Method Yes Sometimes No
Graphical Input 17 24 23
Token Lookup 4 18 42
Token Calculation 15 25 24

Table 2. The “annoyance factor” — did using
the particular method take too long?

To assess the “annoyance factor,” we asked, for each
method, whether performing a transaction would take “too
long.” The results are shown in Table 2. We can see that
the majority does not consider the extra effort to be overly

annoying. Finally, we asked whether the study participants
would be willing to use the proposed methods for their ac-
tual online banking, provided that these methods offer addi-
tional security. For CAPTCHA input, 51 participants (80%)
answered “yes,” while for the confirmation schemes, the ap-
proval was even higher (58 users or 91%).

When comparing the results from this study with our ini-
tial one, we can conclude that the additional effort invested
in improving our prototype has paid off. While in the first
study, assistance was requested by almost all participants,
now only ten people required assistance with the CAPT-
CHA input, seven needed help with token computation, and
two with token lookup. Moreover, during the initial study,
87% of the transactions were completed successfully, while
in the new study, the success rate was raised to 95%. Fi-
nally, we compared the average durations for a (successful)
transaction: 133 seconds in the first study compared to 94
seconds in the second. When we exclude the tutorial trans-
actions from the average, the time even drops to 77 seconds.

In addition to the ease-of-use, our study was also de-
signed to assess the security of schemes that require some
collaboration (and alertness) from users. To this end, we
simulated a Trojan horse that attempted to tamper with
some of the transactions (i.e., change the destination ac-
count number). We designed the Trojan to do this openly,
that is, the modified account number was displayed on the
confirmation page (and when entering it via CAPTCHA in-
put). The hope (from the point of view of the attacker)
was that the user would not notice the malicious account
number and complete the transaction anyways. We did not
specifically advise users of the fact that the machine could
be compromised. For each user, the Trojan allowed the first
few transaction to be free of tampering. Then, attacks were
injected randomly with a certain probability. In the first
study, the probability was high (causing up to three attacks
for each user), and we decided to lower it for the second
study because we realized that too many attacks distracted
the users from the main goal of this study, assessing the
system’s usability. Now, about 25% of the participants ex-
perienced a single attack in the course of the test run.

We did not assume that this unsophisticated attack would



prove effective, but 25% of the attacks in the first study were
successful, regardless of the security scheme used. In the
second study, we noted that all attacks against CAPTCHA
input were noticed by the users. Without graphical input, a
few attacks were successful. This underlines in a disturb-
ing fashion the limits of security solutions that require user
cooperation. Nevertheless, our proposed protection tech-
niques force an attacker to trick a user to accept a clearly
incorrect account number. This is in contrast to current so-
lutions, where the attack is invisible.

Given the results of our evaluations and our experiences
while conducting the user studies, it was apparent that once
our proposed solution was understood, most people were
able to perform the required steps with little difficulty. Con-
sidering the additional protection that our techniques pro-
vide, we believe that they are suitable for deployment in
security-critical environments such as online banking.

5 Related Work

Client-side sensitive information theft (e.g., spyware,
keyloggers, Trojan horses, etc.) is a growing problem. In
fact, the Anti-Phishing Working Group has reported over
170 different types of keyloggers distributed on thousands
of web sites [1]. Hence, the problem has been increasingly
gaining attention and a number of mitigation ideas have
been presented to date.

Several client-side solutions have been proposed that aim
to mitigate spoofed web-site-based phishing attacks. Pwd-
Hash [22] is an Internet Explorer plug-in that transparently
converts a user’s password into a domain-specific password.
A side-effect of the tool is some protection from phishing at-
tacks. Because the generated password is domain-specific,
the password that is phished is not useful. SpoofGuard [5] is
a plug-in solution specifically developed to mitigate phish-
ing attacks. The plug-in looks for “phishing symptoms”
such as similar sounding domain names and masked links.
Note that both solutions focus on the mitigation of spoofed
web-site-based phishing attacks. That is, they are vulnera-
ble against client-side attacks as they rely on the integrity
of the environment they are running in. Similarly, solu-
tions such as the recently introduced Internet Explorer anti-
phishing features [16] are ineffective when an attacker has
control over the user’s environment.

Spyblock [11] aims to protect user passwords against
network sniffing and dictionary attacks. It proposes to use
a combination of password-authenticated key exchange and
SSL. Furthermore, as additional defense against pharming,
cookie sniffing, and session hijacking, it proposes a form of
transaction confirmation over an authenticated channel. The
tool is distributed as a client-side system that consists ofa
browser extension and an authentication agent that runs in
a virtual machine environment that is “protected” from spy-

ware. A disadvantage of Spyblock is that the user needs to
install and configure it, as opposed to our purely server-side
solution.

A number of hardware-based solutions have been pro-
posed to enable secure input on untrusted platforms. Chip
cards and smart-card readers [10, 23], for example, are pop-
ular choices. Unfortunately, it might be possible for the at-
tacker to circumvent such solutions if the implementations
rely on untrusted components such as drivers and operating
system calls [12, 24, 25]. As an alternative to smart-card-
based solutions, several researchers have proposed using
handhelds as a secure input medium [2, 15]. Note that al-
though hardware-based solutions are useful, unfortunately,
they are often expensive and have the disadvantage that they
have to be installed and available to users.

A popular anti-keylogger technique that is already being
deployed by certain security-aware organizations are graph-
ical keyboards. Similar to our graphical input technique, the
idea is that the user types in sensitive data using a graphi-
cal keyboard. As a result, she is safe from keyloggers that
record the keys that are pressed. However, there have been
increasing reports of so-called “screenscrapers” that capture
the user’s screen and send the screenshot to a remote phish-
ing server for later analysis [6]. Also, with many graphical
keyboard solutions, sensitive information can be extracted
from user elements that show the entered data to provide
feedback for the user. Finally, to the best of our knowledge,
no graphical keyboard solution uses CAPTCHAs. Thus, the
entered information can be determined in a straightforward
fashion using simple OCR schemes.

The cryptographic community has also explored dif-
ferent protocols to identify humans over insecure chan-
nels [8, 14, 27]. In one of the earliest papers [14], a scheme
is presented in which users have to respond to a challenge,
having memorized a secret of the modest amount of ten
characters and five digits. The authors present a security
analysis, but no usability study is provided (actually, the
authors defer the implementation of their techniques to fu-
ture work). The importance of usability studies is shown in
a later paper by Hopper and Blum [8]. In their work, the
authors develop a secure scheme for human identification,
but after performing user studies with 54 persons, conclude
that their approach “is impractical for use by humans.” In
fact, a transaction takes on average 160 seconds, and can
only be performed by 10% of the population. Our scheme,
on the other hand, takes less than half of this time, and 95%
of the transactions completed successfully.

Finally, client-side attacks could be mitigated if the user
could easily verify the integrity of the software running on
her platform. Trusted Computing (TC) [20] initiatives aim
to achieve this objective by means of software and hard-
ware. At this time, however, TC solutions largely remain
prototypes that are not widely deployed in practice.



6 Conclusion

Web applications have become the most dominant way to
provide access to online services. A growing class of prob-
lems are client-side attacks in which malicious software is
automatically installed on the user’s machine. This software
can then easily access, control, and manipulate all sensitive
information in the user’s environment. Hence, an important
web security research problem is how to enable a user on an
untrusted platform to securely transmit information to with
a web application.

Previous solutions to this problem are mostly hardware-
based and require peripheral devices such as smart-card
readers and mobile phones. In this paper, we present two
novel server-side techniques that can be used to enable se-
cure user input. The first technique uses confirmation to-
kens that are bound to sensitive data to ensure data integrity.
Confirmation tokens can either be looked up directly in a
code book or they need to be calculated using simple algo-
rithms. The second technique extends graphical input with
CAPTCHAs to protect the confidentiality and integrity of
user input against automated attacks. The usability studies
that we conducted demonstrate that, after an initial learning
step, our techniques are understood and can also be applied
by a non-technical audience.

Our dependency on the web will certainly increase in the
future. At the same time, client-side attacks against web
applications will most likely be continuing problems as the
attacks are easy to perform and profitable. We hope that
the techniques we present in this paper will be useful in
mitigating such attacks.

Acknowledgments

We would like to thank all users who participated in
our usability study. Additionally we would like to thank
all those, who made the study possible (i.e., provided the
space, hardware and funds). This work has been supported
by the Austrian Science Foundation (FWF) under grants P-
18764, P-18157, and P-18368 and the Secure Business Aus-
tria competence center.

References

[1] Anti-phishing Working Group. http://www.
antiphishing.org.

[2] D. Balfanz and E. Felten. Hand-Held Computers Can Be
Better Smart Cards. InProceedings of the 8th Usenix Secu-
rity Symposium, 1999.

[3] Carnegie Mellon University. The CAPTCHA Project.
http://www.captcha.net.

[4] W. Cheswick. Johnny Can Obfuscate: Beyond Mother’s
Maiden Name. InProceedings of the 1st USENIX Workshop
on Hot Topics in Security (HotSec), 2006.

[5] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell.
Client-side defense against web-based identity theft. InPro-
ceedings of the Network and Distributed Systems Security
(NDSS), 2004.

[6] FinExtra.com. Phishers move to counteract bank se-
curity programmes. http://www.finextra.com/
fullstory.asp?id=14149.

[7] S. Hocevar. PWNtcha - Captcha Decoder.http://sam.
zoy.org/pwntcha.

[8] N. Hopper and M. Blum. Secure Human Identification Pro-
tocols. InAsiaCrypt, 2001.

[9] IETF Working Group. Transport Layer Security
(TLS). http://www.ietf.org/html.charters/
tls-charter.html, 2006.

[10] International Organization for Standardization (ISO). ISO
7816 Smart Card Standard.http://www.iso.org/.

[11] C. Jackson, D. Boneh, and J. C. Mitchell. Stronger
Password Authentication Using Virtual Machines.
http://crypto.stanford.edu/SpyBlock/
spyblock.pdf.

[12] A. Josang, D. Povey, and A. Ho. What You See is Not Al-
ways What You Sign. InAnnual Technical Conference of
the Australian UNIX and Open Systems User Group, 2002.

[13] I. Krawarik and M. Kwauka. Attacken aufs Konto (in Ger-
man). http://www.ispa.at/www/getFile.php?
id=846, Jan 2007.

[14] T. Matsumoto and H. Imai. Human Identification Through
Insecure Channel. InEuroCrypt, 1991.

[15] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the
Ether: A Framework for Securing Sensitive User Input. In
Proceedings of the USENIX Annual Technical Conference,
June 2006.

[16] Microsoft Corporation. Internet Explorer 7 features.
http://www.microsoft.com/windows/ie/
ie7/about/features/default.mspx.

[17] G. Mori and J. Malik. Recognizing Objects in Adversarial
Clutter: Breaking a Visual CAPTCHA. InProceedings of
the IEEE Computer Vision and Pattern Recognition Confer-
ence (CVPR). IEEE Computer Society Press, 2003.

[18] S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of
OCR research and development.Document image analysis,
pages 244–273, 1995.

[19] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A
Crawler-based Study of Spyware on the Web. InProceed-
ings of the 13th Annual Network and Distributed System Se-
curity Symposium (NDSS), February 2006.

[20] S. Pearson.Trusted Computing Platforms. Prentice Hall,
2002.

[21] Pressetext Austria. Phishing-Schäden bleiben am Kunden
hängen (in German).http://www.pressetext.at/
pte.mc?pte=061116033, Nov 2006.

[22] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger Password Authentication Using Browser
Extensions. InProceedings of the 14th Usenix Security Sym-
posium, 2005.

[23] Secure Information Technology Center Austria
(A-SIT). The Austrian Citizen Card. http:
//www.buergerkarte.at/index en.html,
2005.



[24] A. Spalka, A. Cremers, and H. Langweg. Protecting the
Creation of Digital Signatures with Trusted Computing Plat-
form Technology Against Attacks by Trojan Horse. InIFIP
Security Conference, 2001.

[25] A. Spalka, A. Cremers, and H. Langweg. Trojan Horse At-
tacks on Software for Electronic Signatures.Informatica,
26, 2002.

[26] W3C Working Group. Inaccessibility of CAPTCHA, Alter-
natives to Visual Turing Tests on the Web.http://www.
w3.org/TR/turingtest/.

[27] C. Wang, H. Hwang, and T. Tsai. One the Matsumoto and
Imai’s human identification scheme. InEuroCrypt, 1995.


