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Abstract

Network-based intrusion detection systems analyze network traffic looking for evidence of attacks. The analysis
is usually performed usingsignatures, which are rules that describe what traffic should be considered as malicious.
If the signatures are known, it is possible to either craft anattack to avoid detection or to send synthetic traffic that
will match the signature to over-stimulate the network sensor causing a denial of service attack. To prevent these
attacks, commercial systems usually do not publish their signature sets and their analysis algorithms. This paper
describes a reverse engineering process and a reverse engineering tool that are used to analyze the way signatures
are matched by network-based intrusion detection systems.The results of the analysis are used to either generate
variations of attacks that evade detection or produce non-malicious traffic that over-stimulates the sensor. This
shows that security through obscurity does not work. That is, keeping the signatures secret does not necessarily
increase the resistance of a system to evasion and over-stimulation attacks.
Keywords: Evasion, Detection Signatures, Network-based Intrusion Detection, Reverse Engineering.

I. INTRODUCTION

Network-based intrusion detection systems (NIDSs) analyze the contents of network traffic to find
evidence that malicious activity is occurring. The analysis is performed using different techniques, which
can be classified into anomaly detection techniques and misuse detection techniques.

Anomaly detection techniques rely on models of expected, benign behavior of both the applications
(e.g., in terms of the protocol being used) and the network (e.g., in terms of the type and amount of traffic
exchanged). These models may be generated manually, derived automatically from application source
code, created as the results of protocol analysis, or can be learned by observing the network during a
training phase.

Misuse detection techniques take a complementary approachand rely on models of malicious behavior
to identify instances of attacks in network traffic. Similarto the previous set of techniques, the models
may be written manually, derived from specifications, or learned from sample input.

The most common form of attack model is a manually writtensignature. A signature is a set of rules
that, when applied to an input stream, will match every instance of the attack modeled by the signature.
Signatures can be applied to input events using different matching models (e.g., stateless or stateful
models) and can be expressed in different languages (e.g., regular expressions or predicates).

Although the use of signatures requires continuous updating of the signature set and makes intrusion
detection systems somewhat ineffective against novel attacks, all of the most popular NIDSs rely on
signatures. This is the case for both open-source systems such as Snort [18], Bro [15], and NetSTAT [23]
as well as closed-source systems such as ISS’ RealSecure [10], Symantec’s ManHunt [22], and NFR [17].

Knowing the set of signatures used by a network-based intrusion detection system gives the attacker
two advantages: it allows the attacker (i) to devise ways to evade detection by crafting attacks in a way
that will not be matched by a signature and (ii) to perform over-stimulation attacks where synthetic traffic
is sent to the intrusion detection system to cause an excessive amount of alerts. This effectively results
in a denial of service attack against the NIDS administrator, who quickly becomes desensitized to alerts
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issued by the system. In addition, because developing signatures is a time-consuming, expertise-intensive
process, commercial systems often do not disclose their signatures to prevent competitors from copying
them.

Developers of closed-source systems often believe that keeping signatures undisclosed is an effective
way to protect the system from evasion techniques, over-stimulation attacks, and intellectual property theft.
Unfortunately, this sense of security is unjustified. We have developed an approach to evade detection
that is based on information obtained from reverse engineering closed-source signatures and detection
routines. The reverse engineering process involves the dynamic analysis of the sensor binary when it is
stimulated with legitimate and malicious input. The analysis results are then used to guide the selection
of appropriate evasion techniques from a set of alternatives.

Being able to generate instances of attacks that evade detection by Snort is not very surprising, since the
Snort signatures are readily available. However, in this paper we demonstrate how by using information
gathered during the reverse engineering process we were able to generate instances of attacks that evade
detection by ISS’ RealSecure. Although the results are limited to one commercial system, the comparison
with Snort shows that a closed-source approach does not necessarily afford better protection against evasion
attacks. In addition, this methodology lays the foundationfor an approach that can leverage black-box
testing of network-based intrusion detection systems as, for example, described in prior work by the
authors [14].

The remainder of this paper is structured as follows. Section II presents related work. Section III
discusses our evasion technique and the reverse engineering tool that we developed for this purpose.
Section IV presents the vulnerability and a corresponding attack that are used in our case study to
demonstrate how Snort (in Section V) and ISS’ RealSecure (inSection VI) can be successfully evaded.
Finally, Section VII draws conclusions and outlines futurework.

II. RELATED WORK

Evasion techniques have been studied since the very first introduction of intrusion detection systems. In
the field of network-based intrusion detection, several techniques have been proposed (see in particular the
work of Ptacek et al. [16]) and implemented [8], [21]. A more recent effort has investigated the potential
for algorithmic denial of service of NIDSs [4]. Additionally, work has been done on hardening IDSs
against evasion attacks using traffic normalization [7] or by eliminating network-level ambiguities [19].

The introduction and vast deployment of open-source NIDSs,most notably of Snort [18], also spawned
the creation of tools that leverage the signatures of a system to drive attacks against the detection process.
A class of these tools is represented by over-stimulation tools such as Snot [20], Stick [6], IDSWakeup [2],
and Mucus [14], which was developed by the authors. The concept of signature-driven traffic generation
was extended with Mucus to perform black-box testing of closed-source network-based intrusion detection
systems. One of the lessons learned in developing the cross-testing technique was that, due to intellectual
property concerns, NIDS developers are very secretive about their signatures, even when presented with
the possibility of getting useful feedback about the effectiveness of their detection capabilities [14]. As
a consequence, it is almost impossible to obtain signature sets from vendors. These vendors often claim
that by making the detection process closed-source, their particular IDS is made more resilient to evasion
and over-stimulation attacks. This claim motivated our work and is evaluated in the remainder of the
paper. Our findings show that closed-source signatures and algorithms provide only limited protection
against evasion or over-stimulation attacks and may provide a false sense of security. To the best of our
knowledge, a technique that uses the results of the reverse engineering of closed-source NIDS signatures
to drive evasion attacks has never been proposed before.

III. EVASION AND OVER-STIMULATION

Intuitively, we define theattack spacefor an attack as the set of all event sequences (e.g., networktraces,
system call traces) that contain successful instances of this attack. Thesignature spaceof a signature is
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Fig. 1. Evasion and over-stimulation.

defined as the set of all event sequences that match (i.e., fulfill the constraints of) this signature. Evasion
and over-stimulation attacks are possible when the attack space and the signature space for a particular
attack do not completely overlap (see Figure 1). Event sequences in the attack space that are not in the
signature space are called evasion attacks, while sequences that are in the signature space but not in the
attack space are called over-stimulation attacks.

Previous work has demonstrated that current IDS implementations are open to a variety of evasion
attacks [16], [25]. These evasion attacks involve desynchronizing the view of the IDS from the view of
the attacked service with respect to a stream of network events. By doing this, a successful attack against
the service may appear benign to the IDS.

The quintessential example of a network-level IDS evasion is the overlapping IP fragment attack [16].
This attack exploits an undefined area of the IP specificationwith regard to the reassembly of overlapping
IP fragments. Since the specification fails to mention whether newer or older overlapping data is to be used,
the network stacks for various operating systems behave differently, some preferring newer data, others
preferring older data. Historically, NIDS have followed a general policy of preferring either only newer
or only older data. Thus, if an attacker knows that a host protected by a NIDS reassembles fragments
differently than the NIDS itself, then it is possible to hidethe signs of an attack from the NIDS by
fragmenting the IP packets carrying the attack in a way that makes the NIDS believe that the traffic is
benign.

A common example of a protocol-level IDS evasion is the use ofalternate data encodings that are
correctly handled by an application but not parsed by an IDS [5]. For instance, the HTTP specifi-
cation defines a method for encoding characters as part of a URL which are excluded from the set
[0-9a-zA-Z$- .+!*’(),] by replacing these characters with a “%” character followedby a two-
digit hexadecimal representation of the characters’ ISO-Latin code. HTTP servers are expected to correctly
decode URL-encoded strings as necessary. However, there have been many instances of IDS implemen-
tations that neglected to account for URL-encoded strings.This allowed attackers to evade detection by
encoding the attack in a way that prevents the NIDS from successfully matching the malicious URL.

A. Evasion Technique

The task of evading detection by a misuse-based NIDS is possible, as described above, whenever there
exists some sequence of events that is both (a) a member of theset of sequences that constitute a successful
attack on a target system and (b) falls outside the set of event sequences matched by the signatures in
the NIDS. When using a black-box approach (without information about the detection process or precise
details about the signatures), finding such a sequence is an iterative process with the following two steps.

1) Modification Step:Modify the attack using known evasion techniques [24].

2) Verification Step:Test the attack on the target system, verifying that the modified exploit successfully compromises the

target. Then, check which alerts were generated by the intrusion detection system. When no alerts were generated, the
evasion attempt was successful, otherwise the process is repeated from Step 1.

The major shortcoming of this approach is that it can be very time consuming, especially when both the
code modification step and the verification step have to be performed manually. Also, without knowledge



of the inner workings of the detection process and the signatures used by the system, it is not clear which
changes to the attack are most promising. Additionally, even when both steps (exploit modification and
verification) can be automated, it is still possible that thecode modification rules are not powerful enough
to express an evasion opportunity that is specific enough fora particular system or signature.

When the source code and signatures for a NIDS are available,however, a better approach is to
try to understand the detection mechanism of the system and identify potential problems in the input
parsing routines or in the attack signatures. In misuse-based IDSs, signatures are typically encoded as a
conjunction of constraints on values contained in one or more input events. In general, an alert is issued
by the system when all such constraints are satisfied. Thus, for the purposes of evading an attack, only
one such constraint needs to be unsatisfied in order for the events associated with the evasion attempt
to go undetected. Explicit knowledge of these constraints establishes the power of the modification rules
being applied with respect to the set of constraints imposedby the target NIDS. This often permits the
attacker to determine whether the modification ruleset is powerful enough to perform the desired evasion.
In addition, knowledge of signature constraints can be usedto drive the modification in the direction most
likely to result in a successful evasion. With this in mind, Step 2 in the two step process from above is
replaced with Step 2’, which includes an analysis sub-step:

2’) Verification and Analysis Step:Test the attack on the target system, verifying that the modified exploit successfully
compromises the target. Then, check which alerts were generated by the intrusion detection system. When no alerts

were generated, the evasion attempt was successful.If an alert is generated, determine the root cause(s) of the detection.

Return to Step 1, applying the findings of Step 2’.

Analysis of open source NIDS signatures, such as those in Snort’s signature set, reveals that signatures
often exhibit weaknesses: they are designed to match only one variant of a particular attack, or they may
be written to detect circumstantial or collateral evidenceof an attack, as opposed to direct evidence. For
example, a signature that looks for indirect evidence may betriggered when a packet is sent to a particular
port and the packet has a length greater than some value. A more precise signature may additionally look
for shellcode in the packet’s payload, which more directly indicates an attack. In the case where a signature
is written to match a single instance of a vulnerability being exercised – for example, matching a specific
string of bytes in an attack’s shellcode – evasion is often possible by inserting an instruction that has no
effects, or by remapping the registers used by the shellcode. These observations suggest that signature
analysis can be a significant benefit to the evasion process.

When the source code of the NIDS and its signatures are available, the attacker is able to observe
the precise sequence of checks made by the system on input events prior to issuing or not issuing an
alert. However, this is not possible in general for closed-source systems, since the sequence of checks is
not deducible from the textual descriptions of signatures that commonly accompany commercial IDSs.
Furthermore, even in cases where signatures are available,imprecise definition of the semantics of the
signature language may lead to uncertainty with respect to what checks the implementation actually
performs on events in its input. The following section proposes a technique for signature analysis under
such circumstances.

B. Reverse Engineering

In order to be able to determine the reason why a particular alert is generated by a closed-source
IDS, the binary has to be analyzed. This process, often called reverse engineering, is defined as the
process of analyzing a system to identify the system’s components and their interrelationships and creating
representations of the system in another form or at a higher level of abstraction. As such, the reverse
engineering process is always closely connected with and dependent on the system that is analyzed. It is
possible, however, to provide general guidelines and toolsthat support this process.

First, it is useful to have a mechanism that can quickly generate variations of input events (e.g., network
packets with different payloads), which is needed during the modification step. In our experiments with



network-based intrusion detection systems, we used two publicly available tools: hping [9] and an extended
version of our IDS testing tool, Mucus [14].

During the analysis step, it is helpful to have (i) a static disassembly of the binary available, and (ii) a
dynamic trace of each instruction that is executed by the intrusion detection sensor when an input event
is received.

For our experiments, the dynamic traces were gathered usingtheptracesystem call interface. The ptrace
system call provides a means by which a process can observe and control the execution of another process
and examine and change its process image and registers. One of the ptrace options allows the tracing
process to single-step the traced process. That is, after each instruction is executed by the traced process,
control is transferred back to the tracing process, which isthen able to inspect register and memory values.
This allows one to record and analyze each executed instruction along with its operands.

The ptrace interface is usually used to implement debuggers(such asgdb) or system call tracing.
For our experiments, we implemented an instruction tracingtool, calleditrace, to gather dynamic traces.
Itrace uses the single-step functionality of ptrace to execute single instructions of the process that is under
analysis. After each step, the instruction that has been executed is parsed and disassembled. Additionally,
an analysis of the instruction’s operands is performed. Foreach register operand, the current value of
the corresponding register is shown. For each memory access, the corresponding memory addresses are
calculated and the values at these addresses are extracted from the running process image. Because itrace
analyzes instructions and operands, we were required to implement a significant subset of the Intel i386
instruction set and the various addressing modes. This is a non-trivial task considering the fact that the
i386 instruction set contains a large number of variable length CISC operations with addressing modes
that can take up to three register and immediate value components.

Itrace also has the capability to identify function call andreturn instructions. This information is used
to build a control flow graph of the application that graphically shows the way functions call each other
at run-time. Having dynamic data from an actual program execution available is particularly beneficial
when the code contains indirect function calls or indirect jumps. A control transfer instruction, such as a
call or a jump, is calledindirect if the target of this instruction is not determined by a constant address or
offset. Instead, the target is obtained from a register or memory address at run-time. Therefore, it is often
not possible to statically find the targets of indirect control transfer instructions and only an incomplete
call graph can be built. When using the data from a dynamic trace, however, it is at least possible to
include a subset of the valid call targets (i.e., all targetsthat are called during the program’s execution)
in the control flow graph.

IV. CASE STUDY

The case study in this paper demonstrates our evasion technique on both an open-source and a closed-
source NIDS, and makes use of a remotely exploitable vulnerability in the Apache web server as a
pedagogical example. The vulnerability appears in Apache 1.3 through 1.3.24 and Apache 2.0 through
2.0.36. It is caused by the way in which chunk-encoded HTTP requests are handled.

HTTP chunk encoding is specified in the HTTP/1.1 protocol as aspecific form of transfer encoding
for HTTP requests and replies. In general, transfer encoding values are used to indicate an encoding
transformation that has been applied to a message body in order to ensure safe or efficient transport
through the network. In particular, chunk encoding allows aclient or a server to divide the message into
multiple parts (i.e., chunks) and transmit them one after another. A common use for chunk encoding is
to stream data in consecutive chunks from a server to a client.

When an HTTP request is chunk-encoded, the string “chunked” has to be specified in the transfer
encoding header field; then a sequence of chunks can be transmitted. Each chunk consists of a length
field, which is a string that is interpreted as a hexadecimal number, and a chunk data block. The length of
the data block is specified by the length field, and the end of the chunk sequence is indicated by an empty



(zero-sized) chunk. Both the chunk length field and the chunkdata block are terminated by a carriage-
return (“\r”) character followed by a line-feed character (“\n”). A simple example of a chunk-encoded
request is shown below.

Transfer-Encoding: chunked

6\r\n \ first chunk
AAAAAA\r\n /
4\r\n \ second chunk
BBBB\r\n /
0 final chunk

Apache is vulnerable to an integer overflow when the size of a chunk exceeds 0x7fffffff (which causes
the most significant bit to become 1). Vulnerable versions ofApache treat the chunk size as a signed
32-bit integer and fail to include the proper size checks. Thus, an attacker can craft the request so that
the overflow is triggered, and arbitrary code (which can be included in other header fields of the HTTP
request) can be executed.

This particular vulnerability was selected for a number of reasons. First, Apache is the most widely
deployed web server and thus a prominent target for attackers. A vulnerability in a program with Apache’s
installation base raises a lot of interest both in the black-hat community and among security system
vendors. This has the important result that several exploits that can be readily used for our case study are
currently circulating on the Internet. In addition, these exploits cannot be ignored by intrusion detection
system vendors and maintainers, and it is in their interest to provide “good” signatures for them.

Another reason for choosing the chunk encoding exploit is that it is a complex attack that exploits an
input validation error in Apache. The attacker has to first connect to the web server using a TCP three-way
handshake and then supply specially crafted input, including shellcode, that triggers the vulnerability. This
gives the IDS multiple chances to detect the attack. However, to be able to write a good signature that
correctly models the vulnerability, the system is requiredto correctly reassemble the TCP stream, parse
the HTTP protocol, and detect the oversized chunk length.

The following two sections describe the steps that were taken to evade detection by an open-source IDS
(Snort) and a closed-source IDS (ISS’ RealSecure) when exploiting the Apache vulnerability described
above.

V. EVADING THE SNORT NIDS

The Snort 2.1.1 ruleset contains two signatures for detecting the Apache chunk overflow attack. The
first signature looks for traffic directed to a web server thatcontains a binary sequence known to appear
in the shellcode of a known chunked encoding exploit:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC apache chunked encoding memory corruption exploit
attempt"; flow:established,to_server;
content:"|C0 50 52 89 E1 50 51 52 50 B8 3B 00 00 00 CD 80|";
reference:bugtraq,5033; reference:cve,CAN-2002-0392;
classtype:web-application-activity; sid:1808; rev:3;)

This signature is readily recognizable as being weak in the sense that it matches a particularattack, as
opposed to detecting a general class of activity related to the vulnerability.

The second signature matches packets destined for a web server whose payloads contain padding
characters that are known to occur in packets generated by another known exploit of this vulnerability:



alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC Apache Chunked-Encoding worm attempt";
flow:to_server,established;
content:"CCCCCCC\: AAAAAAAAAAAAAAAAAAA"; nocase;
classtype:web-application-attack; reference:bugtraq,4474;
reference:cve,CAN-2002-0079;reference:bugtraq,5033;
reference:cve,CAN-2002-0392; sid:1809; rev:2;)

Again, it can be seen that the content being matched is not direct evidence of a vulnerability being
exploited, but rather a string that is associated with a known (single) instance of an attack that exploits
the vulnerability. As we will see, this specificity can be exploited to evade detection.

As mentioned above, two exploits for the Apache chunked encoding vulnerability were readily available
from sources on the Internet. The first exploit considered for the reverse engineering effort uses shellcode
that contains precisely the binary sequence specified in thefirst signature, so it was discarded in favor of
the second exploit.

Having chosen the exploit, the evasion effort focused on refinement of the exploit with respect to the
second signature. Recall that this signature triggers on payloads containing a fixed string. In order to
evade detection, the string produced by the attack was modified so that one space instead of two spaces
occurred after the colon (i.e., “CCCCCCC\:tAAA. . .” was replaced with “CCCCCCC\:ttAAA. . .”). The
attack still succeeds since this modification has no effect on how Apache interprets the string. However,
the signature does not fire on the modified string.

Surprisingly, this testing revealed an additional alert from one of Snort’s preprocessors
(http inspect server):

[**] [119:16:1] (http_inspect) OVERSIZE CHUNK ENCODING [**]

This unexpected alert had to be evaded as well in order for theevasion attack to be considered successful.
Examining the exploit code in conjunction with thehttp inspect server preprocessor code

revealed the cause of the alert. Since the chunked encoding exploit relies on overflowing a signed integer
representing the chunk length, the length appears as a very large unsigned integer (0xffffff6e). The
http inspect server preprocessor can be parameterized with a maximum chunk encoding that
defaults to 500000, far below the value for the chunk length required for the exploit to be successful.

With this knowledge, an attack on Snort’s parser was devised. Upon inspecting the preprocessor’s routine
for parsing the chunk length, we noted that the code assumes the integer encoding is immediately followed
by a carriage-return/line-feed sequence (“\r\n”). Violating this assumption results in a variable being set
to 0, which prevents the accumulated value of the chunk length from being compared against the limit. The
attack was therefore modified to send a length sequence containing a tab character: “ffffff6e\t\r\n”,
and the padding string generated by the exploit was reduced by a single character to account for the
modification. The modified attack was tested successfully against Apache, and no Snort alerts were
produced.

VI. EVADING THE REALSECURE NIDS

RealSecure, which is developed by Internet Security Systems (ISS), was chosen as the closed-source
system for our evaluation because, as of the time of writing,it is commonly considered to be the most
widely deployed commercial intrusion detection system. Inaddition, ISS established X-Force, a respected
security team that performs in-depth security research, including penetration testing on common server
applications and systems. Their real-world expertise is claimed to be a driving influence on the security
of ISS’ products and services.

First, we downloaded the evaluation version of the RealSecure network sensor from ISS’ web site. The
sensor is Version 7.0 (the latest available at the time of ourexperiments), and it is shipped as several binary



packages for RedHat Linux 7.3. In addition to the sensor, a custom Linux 2.4.18 kernel is provided, which
replaces the standard kernel of the RedHat 7.3 installation. We also downloaded SiteProtector for Windows
2000, a centralized management console that remotely controls RealSecure sensors and provides a central
point to collect and display alerts. The Windows 2000 host running SiteProtector and the RedHat 7.3 host
running the RealSecure sensor were both deployed on the sameprivate network that was previously used
to analyze Snort.

Before the reverse engineering effort was undertaken, we hoped to extract the bulk of RealSecure’s
signatures. We assumed that there was a signature file, whichis loaded when the sensor is started, and
that it would only be necessary to determine the signature format. At the very least, we expected that
there would be data structures in the memory image of the running sensor process that could be mapped
to simple checks (e.g., such as checking the destination port in a TCP packet against the value of the
HTTP port). This would then allow us to reconstruct most signatures.

Unfortunately, these assumptions turned out to be wrong. RealSecure uses a shared library (called
iss-pam1.so), which is dynamically loaded when the sensor process is launched. This library encodes
the signatures and their corresponding checks directly as executable code. To be more precise, there is
no location in the executable file or in memory that contains aparametric description of which checks
have to be performed by a general purpose detection routine.Instead, the library code contains explicit
machine code instructions for each check that needs to be performed on behalf of every signature. These
instructions mostly operate with immediate values (i.e., hard-coded values that are part of the instruction)
that are compared against values in the input data. This makes the automatic extraction of signatures
comparable to the difficulty of the program understanding problem. However, it is feasible to analyze the
program trace for a single attack and determine the input processing and the checks that are performed
before a particular alarm is raised.

Fortunately, there was no obvious attempt to obfuscate the library code or to harden the binary
against reverse engineering. Even though the signature library is stripped (i.e., symbol information used
for debugging and relocation information used for linking are removed) it can be easily disassembled.
Additionally, when printing strings of three or more consecutive printable characters in the library file
(using thestrings utility) many content strings that were likely to be part of attack signatures can be
seen. Also, ISS ships RealSecure with a list that contains each signature’s name, identification number,
and a brief description of its purpose.

The idea for the analysis was to useitrace to record a dynamic trace of each instruction that was executed
by the sensor beginning from the point in time when a packet, containing the malicious payload, was
received to the instant in which the attack was actually detected by the sensor. To constrain the program
trace to contain only relevant code that is executed when input data is matched against signatures, we
attacheditrace to the sensor process after all startup routines had finishedand the sensor had entered a
polling loop to wait for a network packet to arrive.

We decided to start as simply as possible, by sending a single, zero-length UDP packet with a destination
port of 161 to the RealSecure sensor. According to the signature list, such packets are considered to be
SNMP probes that raise a single alert. No other packets were transmitted over the network while the trace
was in progress. However, even for one UDP packet, the resulting trace contained several million lines. At
this point, we observed that whenever a signature is triggered, an immediate value that is equivalent to this
signature’s identifier (according to RealSecure’s signature list) is pushed on the stack. This observation
allowed us to locate the point in the trace where a signature is detected and allowed us to focus on the
code region that is executed immediately before, in the assumption that the relevant checks happen there.

This assumption proved to be correct, and for the UDP packet sent to port 161 a series of instructions
that compare the packet destination to immediate values of prominent destination ports (e.g., HTTP,
SMTP, or TELNET ports) was executed before the signature identifier for the SNMP attack was pushed.
By following the path in the library code for other destination ports, signatures for attacks against the



corresponding services were located.
Before starting with the more complex Apache chunk encodingattack, which involves multiple packets,

a simpler UDP-based NTP (network time protocol) daemon overflow attack was analyzed. A signature
for this attack is included in the RealSecure ruleset and a readily available exploit from the Internet was
correctly identified. Upon analysis of the library code and the traces, it turned out that ISS’ signature
is triggered by all UDP packets that are sent to the NTP port and that exceed a certain length. That
is, no analysis of the protocol or the payload takes place. This finding was easily verified by crafting a
zero-filled packet of the appropriate length and observing that RealSecure generated an alert in response.
Thus, the NTP daemon buffer overflow signature is a typical example of an inaccurate signature that is
vulnerable to over-stimulation. Because the packet payload and protocol details are ignored, it is easy for
an attacker to trigger this alert at will and over-stimulatethe system.

After our experience with the two previous test cases, the Apache exploit was analyzed. As an initial
step, we executed the unmodified exploit against the victim host running Apache. RealSecure reported
the following three alerts:

1) HTTP ApacheChunkedBO: This signature checks for an HTTP packet containing the string “Transfer-Encoding:
chunked” and evaluates each chunk to see if its specified sizeis greater than a certain MaxChunkSize.

2) HTTP Field With Binary: This signature detects HTTP requests for fields withbinary (non-ASCII) data.

3) HTTP FieldsWith Binary: This signature detects HTTP requests for three or more fields of any size that contain binary

(non-ASCII) data.

The alerts show that the system correctly detected the attack and, in addition, reported two additional
warnings that refer to the shellcode that is included in morethan twenty additional HTTP header fields.
When the modified exploit that evaded detection by Snort was launched, RealSecure still reported all three
alerts. This provides at least some evidence that ISS does not simply adopt the publicly available Snort
rule for the Apache attack.

The HTTPField With Binary alert is triggered because the shellcode and return addresses of the exploit
are encapsulated in header lines and contain many non-ASCIIcharacters. When analyzing the trace for
this alert, we noticed an additional check that is performedon the length of the header line. It turned out
that the alert is only raised when binary data is presentand the number of characters in the header line
exceeds a threshold of 100. While this additional test was probably introduced to reduce false positives,
it provides an easy way to evade detection by keeping the length of the exploit code below this threshold.
An alternative avenue of evasion would be to encode instructions or replace them with other semantically
equivalent ones such that only ASCII characters are used [1]. In this experiment, the simpler approach
was chosen and the shellcode was shortened appropriately. Given the knowledge of the detection process
and the additional length check, it was straightforward to apply a successful evasion technique for this
alert.

The HTTPFields With Binary alert is raised because the exploit uses more than twoheader fields to
store the exploit data. For this alert, the signature description, which states that three or more fields have
to contain binary data to trigger the alarm, is sufficient to allow successful evasion by reducing the number
of header lines with binary data to two.

The last alert, HTTPApacheChunkedBO, is directly related to the attack. When we reverse engineered
the code that triggered this signature, we found that the RealSecure sensor parsed the HTTP request and
extracted the chunk size values from the request. This chunksize is then checked to ensure that it is small
enough to not cause an overflow. The signature is higher quality than the comparable Snort rules that
check for particular string values that appear in payloads of wide-spread exploits but that are unrelated to
the actual vulnerability1. This signature also highlights the importance of reverse engineering the intrusion

1However, recall that Snort’s httpinspectserver preprocessor extracts the chunk size values from therequest and compares them against
a pre-set limit.
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Fig. 2. Simple parsing state machine reverse engineered from RealSecure.

detection sensor. A black-box approach could have investedsignificant effort in modifying and disguising
the shellcode of the attack, thus focusing on an area that is not checked by the signature.

Given the quality of the signature, which relies on protocolknowledge to accurately model the vulner-
ability, our focus shifted to techniques to desynchronize the view of Apache and RealSecure with respect
to the HTTP request. This requires an understanding of the parsing routines that are used by RealSecure
to extract the chunk sizes from the HTTP request. The analysis of the traces and the corresponding library
code revealed that a simple state machine (shown in Figure 2)is used.

This state machine correctly implements the HTTP specification for chunk-encoded requests. In state
S0, the characters of the chunk size field are read. Because the size field is expected to be terminated
by both a carriage-return (CR) and a line-feed (LF) character, there are two transitions from stateS0 to
stateS1 and from stateS1 to stateS2. These transitions are actually taken for both CR and LF characters.
When stateS2 is reached, the size field string is converted into the corresponding number and a counter
is initialized. This counter is decremented for every character that is subsequently read in stateS2, thus
discarding the following chunk data. When the counter reaches zero, the transition back to stateS0 is
taken and the next chunk is processed.

Apache, however, is more lenient in accepting input that does not completely adhere to the standards.
This is necessary for a web server program that has to deal with peculiarities and implementation
differences of a large variety of web clients. In particular, Apache accepts chunk size fields that are
terminated with a single line-feed character, omitting therequired carriage-return.

This difference in input handling was exploited to launch a successful evasion attack. Consider the
following request:

5\n // first chunk length
XXXXX\n // chunk data (5 characters)
ffffff6e\r\n // second chunk length (overflow)

By omitting the carriage-return character after the chunk size field, RealSecure’s parsing routine was
forced to remain in stateS1, waiting for a second end-of-line character, while readingcharacters from
the chunk data. Because RealSecure’s implementors did not expect to receive input characters other than
carriage-return or line-feed in stateS1, the input is silently dropped. When the second line-feed character
is encountered at the end of the chunk data, only the string “5” is passed to the number conversion routine
and the counter is set to five. Thus, the next five characters (“fffff”) of the second chunk length in the
third line are interpreted as chunk data and discarded in state S2. Then, the state machine returns to the
initial stateS0. The remaining characters of the second length field (“f6e”)are interpreted as the length
of the following chunk, passing the check for overflowing values. Apache, however, interprets the request
as if all lines were correctly terminated with both carriage-return and line-feed characters. Therefore, an
attacker can successfully exploit the vulnerability in Apache and evade detection by RealSecure.

For the previous two case studies as well as the Apache exploit, the use of itrace was essential in quickly
identifying the sections of code responsible for RealSecure’s attack detection. First, the automated nature
of the execution trace generation allowed analysis of the code to be performed in a time-efficient manner
with various stimulations at a great level of detail. To the best of our knowledge, no other tool available



today has this capability. Additionally, by correlating each run with the changes in the input event stream,
itrace enabled us to quickly pinpoint the location and nature of the tests that RealSecure performed on
the input data. This ability made it relatively simple to enumerate most or all of the checks performed
on input data for a given attack, iteratively revealing the nature of a given signature in a short period
of time. Having successfully reverse engineered RealSecure’s detection algorithms, it was then trivial to
deduce methods of evading the system.

VII. CONCLUSIONS AND FUTURE WORK

We developed a technique to reverse engineer closed-sourcesignatures using correlated analysis between
an IDS stimulator and an execution tracer. The results of thereverse engineering process are used as a
basis to select and configure evasion mechanisms that are suitable for a specific attack or a specific system.
The experiments show that by leveraging the results of the analysis it is possible to build modified versions
of attacks that will evade detection by a closed-source, commercial tool.

Our reverse engineering approach supports a better understanding of how the match for a signature is
performed and what the reasons for a missed detection are. Therefore, by using this approach it is possible
to perform more focused and precise testing of closed-source systems.

Future work will focus on creating a more general methodology that will allow one to derive over-
stimulation or denial of service attacks in addition to evasion attacks. Preliminary analysis indicates that
by using dynamic analysis, it is possible to correlate the amount of resources used by a network sensor
to the traffic generated by an IDS stimulator. Using this information, it may be possible to devise attacks
that would force a sensor to use a large amount of resources.

Section VI identified the potential problem that binary and algorithmic obfuscation of binary signatures
poses for our approach. Previous work has explored the related problems of obfuscation ( [13]) and
deobfuscation ( [3], [11], [12]). Future work will examine the extent to which signature obfuscation arises
in commercial sensors and explore effective means for extracting semantic meaning to assist reverse
engineering in the face of obfuscation.

Finally, we plan to automate the comparison of trace sets generated by itrace in order to automatically
derive the tests performed by a closed-source sensor. By composing the IDS stimulation device with
itrace in a framework that allows feedback from itrace to drive the stimulation process, we believe that
the process of reverse engineering closed-source signatures can be performed almost completely without
user intervention.
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