
P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

Host-Based Intrusion DetectionHost-Based Intrusion Detection
Giovanni Vigna, Reliable Software Group

Christopher Kruegel, Technical University Vienna

Introduction 1
Operating System–Level Intrusion Detection 1

Audit Data Gathering 1
Misuse-Based Approaches 2
Anomaly-Based Approaches 3
Specification-Based Approaches 6

Application-Level Intrusion Detection 6
Audit Data Gathering 6
Misuse-Based Approaches 7

Anomaly-Based Approaches 8
Specification-Based Approaches 8

Related Techniques 9
Host-Based IDSs Versus Network-Based IDSs 9
Future Trends 10
Conclusions 10
Glossary 10
Cross References 11
References 11

INTRODUCTION
Intrusion detection (Crothers, 2002; Schultz, Endorf, &
Mellander, 2003) is the process of identifying and respond-
ing to suspicious activities targeted at computing and
communication resources. An intrusion detection system
(IDS) monitors and collects data from a target system that
should be protected, processes and correlates the gathered
information, and initiates responses when evidence of an
intrusion is detected. Depending on their source of input,
IDSs can be classified in to network-based systems and
host-based systems.

Network-based intrusion detection systems (NIDSs)
collect input data by monitoring network traffic (e.g.,
packets captured by network interfaces in promiscuous
mode). Host-based intrusion detection systems (HIDSs),
on the other hand, rely on events collected by the hosts
they monitor.

HIDSs can be classified based on the type of audit data
they analyze or based on the techniques used to analyze
their input. We chose a characterization based on the type
of audit data and, in the following, present the two most
common classes: operating system–level intrusion detec-
tion systems and application-level intrusion detection sys-
tems. For each class, we describe how audit data is gath-
ered and what type of techniques are used for its analysis.

OPERATING SYSTEM–LEVEL
INTRUSION DETECTION
Host-based IDSs in this class use information provided by
the operating system (OS) to identify attacks. This infor-
mation can be of different granularity and level of abstrac-
tion. However, it usually relates to low-level system oper-
ations such as system calls, file system modifications, and
user logons. Because these operations represent a low-
level event stream, they usually contain reliable informa-
tion and are difficult to tamper with, unless the system is
compromised at the kernel level.

In the following, some OS-level auditing data-
gathering mechanisms are presented. Then, different
analysis techniques that use this type of information are
described.

Audit Data Gathering
Auditing is a mechanism to collect information regarding
the activity of users and applications. To be useful, audit
mechanisms have to be both tamperresistant and nonby-
passable. The OS is usually regarded as a trusted entity
because it controls access to resources, such as memory
and files. Therefore, most existing audit mechanisms are
implemented within the OS.

OS audit data is not designed specifically for intrusion
detection. Therefore, in many cases, the audit records pro-
duced by OS-level auditing facilities contain irrelevant in-
formation and sometimes also lack useful information.
As a result, IDSs often have to access the OS directly to
gather required data.

In past years, researchers have attempted to identify
what type of information should be provided to an IDS
to be able to detect intrusions effectively. For example,
Lunt (1993) suggested the use of IDS-specific audit trails.
Daniels and Spafford extended this initial idea and iden-
tified the audit data that OSs need to provide to support
the detection of attacks against the transmission control
protocol/Internet protocol (TCP/IP) stack (1999).

The availability of OS-level auditing mechanisms de-
pends on the operating system considered. For example,
Sun’s operating systems (first SunOS and later Solaris)
provide auditing information through the basic security
module (BSM). The BSM is a kernel extension that allows
one to log events at the system call level. Different audit-
ing levels can be specified, and, in addition to system calls,
security-relevant higher-level events can be generated as
well (e.g., login events). Unfortunately, auditing can be
disabled by the root user, making this particular facility
vulnerable to abuse by an attacker who gains administra-
tive privileges on the monitored host.

BSM produces audit records that are stored in audit
files in a binary format (to be more space efficient). The
contents of such an audit file can be printed in human-
readable format using the praudit tool. Figure 1 shows
an example of records contained in a BSM audit file, as
printed by the praudit tool. In this example, the records
represent the execution of commands performed by in-
voking the execve system call.

1



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION2

Thu Aug 10 22:01:29 2004 -> UID:root EUID:root RUID:root - From machine:log1
execve() + /usr/bin/sparcv7/ps + cmdline:ps,-ef + success
Thu Aug 10 22:01:50 2004 -> UID:root EUID:root RUID:root - From machine:log1
execve() + /usr/bin/tail + cmdline:tail,/etc/system + success
Thu Aug 10 22:11:18 2004 -> UID:root EUID:root RUID:root - From machine:log1
execve() + /usr/bin/pwd + cmdline:pwd + success
Thu Aug 10 22:11:20 2004 -> UID:root EUID:root RUID:root - From machine:log1
execve() + /usr/bin/ls + cmdline:ls,-l + success
Thu Aug 10 22:11:33 2004 -> UID:root EUID:root RUID:root - From machine:log1
execve() + /usr/bin/ls + cmdline:ls,-l + success

Figure 1: BSM audit records.

Similar information is provided by other auditing fa-
cilities for different OSs. For example, for the Linux OS,
SNARE, and LIDS provide kernel-level auditing informa-
tion.

SNARE (system intrusion analysis and reporting envi-
ronment) wraps system calls in routines that gather and
log information about processes that execute security-
relevant system calls. It also supports simple pattern-
matching operations on the audit records produced,
which can be used as a rudimentary form of intrusion
detection. A graphical tool that allows for the filtering of
the collected information is provided as well.

LIDS (linux intrusion detection system), despite its
name, is not an intrusion detection system per se. In-
stead, it provides, in addition to its auditing capabilities,
an access control layer that complements the standard
UNIX access control mechanisms. This access control
layer allows one to specify access control for files, pro-
cesses, and devices. In particular, LIDS does not grant
complete control to the root user. Therefore, it is pos-
sible to guarantee the protection of critical system parts
(e.g., the kernel) even when the root account has been
compromised. Access control is managed with the help
of capabilities. Examples of such capabilities include
CAP LINUX IMMUTABLE, which protects files or complete
file systems from being overwritten when marked as “im-
mutable,” and CAP NET ADMIN, which prevents tamper-
ing with the network configuration (e.g., prevents route
table entries from being changed, and prevents firewall
entries from being tampered with). Other capabilities are
provided to control the insertion and removal of kernel
modules, raw disk/device I/O, and a range of other system
administration functions.

Another place where audit and security information is
stored are operating system log files. For example, almost
all UNIX systems offer the syslog logging facility. The sys-
log facility is accessible through an API that sends a logQ1

message to syslogd, the logging daemon. Each log entry
is composed of the identity of the logging process (usually
the program name), the entry’s level (i.e., the importance
of the message), its facility (i.e., the source of the mes-
sage), and the actual textual message.

Unfortunately, the syslog system has a number of short-
comings. For example, it logs textual messages with ar-
bitrary formats, and, as a result, automated analysis of
syslog output is very difficult. Also, the syslog facility en-
courages the use of multiple log files as a method for
classifying events. Therefore, classifications are arbitrary
and static, and related events are often sent to different
log files. As a result, important context information might

be lost. Finally, this facility provides limited notification
and response mechanisms (e.g., sending mail to operators
or administrators). Other event-logging implementations
(e.g., syslog-ng, SDSC-syslog) exist that have addressed
some of the limitations. Usually, these implementations
support the syslog() function for backward compati-
bility but feed the syslog-generated messages into a more
flexible logging system.

Microsoft Windows also provides an auditing system
that can be leveraged to perform host-based intrusion de-
tection. The auditing facility produces three event logs,
namely the system log, the security log, and the applica-
tion log.

1. The system log (SYSEVENT.EVT) contains events per-
taining to Windows services and drivers. It tracks
events during system startup, as well as hardware
and controller failures (e.g., services that hang upon
starting). In a networked setting, there will often be
“browser” events in this log, because the machines
on the network vote on which one will maintain the
browser list.

2. The security log (SECEVENT.EVT) tracks security-
related events such as logons, logoffs, changes to ac-
cess rights, and system startup and shutdown, as well
as events related to resource usage, such as creating,
opening, or deleting files. Note that by default the se-
curity log is turned off and has to be explicitly enabled
by the administrator.

3. The application log (APPEVENT.EVT) is used for events
generated by applications. For example, a database
program might record in this log a file access error
or a problem with the application configuration. The
events to be recorded are determined by the developer.
This log can grow quite large in size when certain appli-
cations such as MS SQL Server or MS Exchange Server
are running.

All three logs can be viewed using the native Windows
Event Viewer and accessed via the Windows32 API. In
addition, there are a number of third-party applications
available to examine event logs or to collect log events
from multiple Windows machines. The operating system
offers built-in mechanisms to search and filter events us-
ing several different criteria (e.g., time, source, or cate-
gory).

Misuse-Based Approaches
Misuse detection systems contain a number of attack de-
scriptions (or signatures) that are matched against the



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

OPERATING SYSTEM–LEVEL INTRUSION DETECTION 3

stream of audit data and compared to look for evi-
dence that one of the modeled attack is occurring (Ilgun,
Kemmerer, & Porras, 1995; Lindqvist & Porras, 1999).

Misuse detection systems usually provide an attack lan-
guage that is used to describe the attacks that have to be
detected. These languages provide mechanisms and ab-
stractions for identifying the manifestation of an attack.
Well-known examples of detection languages for host-
based intrusion detection systems are P-Best (Lindqvist
& Porras, 1999), which is the rule-based component of
SRI’s EMERALD, UCSB’s STATL (Eckmann, Vigna, &
Kemmerer, 2000), which is used by the STAT Toolset, and
RUSSEL (Mounji, 1997), which is the language used by
ASAX (Habra, Le Charlier, Mounji, & Mathieu, 1992).

All these languages provide a number of basic mecha-
nisms to describe sequences of events and maintain some
sort of intermediate state between different event match-
ings. In the following, we present in more detail the STATL
language as an example of a language that is able to model
complex attacks.

The STATL language provides constructs to represent
an attack as a composition of states and transitions. States
are used to characterize different snapshots of a system
during the evolution of an attack. Obviously, it is not fea-
sible to represent the complete state of a system (e.g., all
volatile memory, file system); therefore, a STATL scenario
uses variables to record just those parts of the system state
needed to define an attack signature (e.g., the value of a
counter or the ownership of a file). Each transition has
an associated action, which is a specification of the events
that cause the transition to be taken (i.e., the scenario
moves into a new state). Examples of actions are the open-
ing of a file or the execution of an application. The space
of events that are relevant for an action is constrained by
a transition assertion, which is a filter condition on events
that may match the action. For example, an assertion may
require that a file be opened with a specific mode (e.g.,
readonly) or that an application being executed is part of
a predefined set of security-critical applications.

It is possible that several occurrences of the same at-
tack are active at the same time. Thus, a STATL attack
scenario has an operational semantics in terms of a set
of instances of the same scenario prototype. The scenario
prototype represents the scenario’s definition and global
environment, and the scenario instances represent indi-
vidual attacks currently in progress.

The evolution of the set of instances of a scenario is
determined by the type of transitions in the scenario defi-
nition. A transition can be consuming, nonconsuming, or
unwinding. A nonconsuming transition is used to repre-
sent a step of an occurring attack that does not prevent
further occurrences of attacks from spawning from the
transition’s source state. Therefore, when a nonconsum-
ing transition is taken, the source state remains valid and
the destination state becomes valid, too. For example, if an
attack has two steps that are the creation of a link named
“-i” to a SUID shell script and the execution of the scriptQ2

through the created link, then the second step does not
invalidate the previous state. That is, another execution
of the script through the same link may occur. Semanti-
cally, the firing of a nonconsuming transition causes the
creation of a new scenario instance. The original instance

s3s0

create_file read_rhosts

s2

login

s1

Figure 2: ftp-write state transition diagram.

is still in the original state, whereas the new instance is in
the state that is the destination state of the fired transition.
In contrast, the firing of a consuming transition makes the
source state of a particular attack occurrence invalid. Se-
mantically, the firing of a consuming transition does not
generate a new scenario instance; it simply changes the
state of the original one. Unwinding transitions represent
a form of “rollback” and are used to describe events and
conditions that invalidate the progress of one or more sce-
nario instances and require the return to an earlier state.
For example, the deletion of a file may invalidate a con-
dition needed for an attack to complete, and, therefore,
the corresponding scenario instances may be brought
back to a previous state, such as before the file was
created.

The STATL language is used to describe scenarios in a
host-based intrusion detection system called USTAT. US-
TAT uses Sun Microsystems’ BSM as a source of audit Q3

data. For example, consider an ftp-write attack, where an
attacker uses the ftp service to create a bogus .rhosts
file in a world-writable ftp daemon home directory. Using
the created file, the attacker is then able to open a remote
session using the rlogin service without being required to
supply a password. A generalization of this attack is that
an attacker creates a bogus.rhostsfile in any other user’s
home directory and then uses it to be allowed to login
without providing a password. This generalization of the
ftp-write attack is depicted schematically in the state tran-
sition diagram in Figure 2. The different types of arrows
are used to denote different types of transitions: a solid arc
with a single arrowhead denotes a nonconsuming transi-
tion and a solid arc with a double arrowhead denotes a
consuming transition. A text-based STATL specification
of the attack is given in Figure 3.

The sequence of events detected by this scenario is
that a file is created (or written to) by a nonroot user
who does not own the directory containing the file, and
then the login program runs and reads the suspicious
file. WRITE, EXECUTE, and READ are abstractions of BSM-
specific event types. The predicate match name() and pro-
cedure userid2name() are helper functions that perform
matching and user ID translation.

Anomaly-Based Approaches
Anomaly-based techniques (Barbera & Jajodia, 2002;
Denning, 1987; Ghosh, Wanken, & Charron, 1998; Javitz
& Valdes, 1991) follow an approach that is complemen-
tary to misuse detection. In their case, detection is based
on models of normal behavior of users and applications,
which are called profiles. Any deviations from established
profiles are interpreted as attacks.

The main advantage of anomaly-based techniques is
that they are able to identify previously unknown attacks.
By defining an expected, normal behavior, any abnormal



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION4

use bsm, unix;
scenario ftp_write
{
int user;
int pid;
int inode;

initial state s0 { }

transition create_file (s0 -> s1)
nonconsuming

{
[WRITE w] : (w.euid != 0) && (w.owner != w.ruid)
{ inode = w.inode; }

}

state s1 { }

transition login (s1 -> s2)
nonconsuming

{
[EXECUTE e] : match_name(e.objname, "login")
{
user = e.ruid;
pid = e.pid;

}
}

state s2 { }

transition read_rhosts (s2 -> s3)
consuming

{
[READ r] : (r.pid == pid) && (r.inode == inode)

}

state s3
{
{

string username;
userid2name(user, username);
log("remote user %s gained local access", username);

}
}

}
Figure 3: Example attack scenario specified in
STATL.

action can be detected, whether it is part of the threat
model or not. The advantage of being able to detect pre-
viously unknown attacks is usually paid for with a high
number of false positives (i.e., legitimate events are clas-
sified as malicious).

In the past, a number of host-based anomaly detection
approaches have been proposed that build profiles using
system calls (Forrest, Hofmeyr, Somayaji, & Longstaff,
1996; Wagner & Dean, 2001). More specifically, these sys-
tems rely on models of legitimate system call sequences
issued by the application during normal operation. Dur-
ing the detection process, every monitored sequence that
is not compliant with previously established profiles is
considered part of an attack.

One technique to create the necessary models of legit-
imate system call sequences is the analysis of system call
invocations during normal program execution. That is,
the anomaly detection system “learns” normal behavior
by monitoring system call traces of legitimate application
runs. These systems, which do not rely on any a priori
assumptions about applications, are thus called learning-
based anomaly detectors.

An example of a learning-based anomaly detector that
is based on system call analysis is described by Forrest
et al. (1996). During the learning phase (also called train-
ing phase), this system collects all distinct system call se-
quences of a certain specified length. During detection, all

actual system call sequences are compared to the set of le-
gitimate ones and an alarm is raised if no match is found.
The approach has been further refined by Lee, Stolfo,
and Chan (1997) and Warrender, Forrest, and Pearlmutter
(1999), where the authors study similar models and com-
pare their effectiveness to the original technique. In Sekar,
Bendre, Bollineni, and Dhurjati (2001), a deterministic
system call automaton for a program is learned by asso-
ciating each system call with its corresponding program
counter. This model, however, does not take into account
context information, which denotes the history of func-
tion calls stored on the program stack, and may miss at-
tacks because of this imprecision. An extension that in-
cludes the context provided by the program call stack was
described by Feng et al. (2003).

Another group of system call–based anomaly detection
systems (Kruegel, Mutz, Valeur, & Vigna, 2003; Provos,
2003) focus on the analysis of system call arguments in-
stead of using sequence information. In (Kruegel et al.,
2003), the input to the detection process consists of
an ordered stream S = {s1, s2, . . .} of system call invoca-
tions recorded by the OS. Every system call invocation
s ∈ S has a return value rs and a list of argument values
<as

1, . . . , as
n>. For each system call, a distinct profile is cre-

ated. This profile captures the notion of a “normal” system
call invocation by characterizing “normal” values for one
or more of its arguments.



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

OPERATING SYSTEM–LEVEL INTRUSION DETECTION 5

The expected “normal” values for individual arguments
are determined with the help of models. A model is a set
of procedures used to evaluate a certain feature of a sys-
tem call argument, such as the length of a string. A model
can operate in one of two modes, learning or detection. In
learning mode, the model is trained and the notion of “nor-
mality” is developed by inspecting examples. Examples
are values that are considered part of a regular execution
of a program and are either derived directly from a subset
of the input set S (learning on the fly) or provided by pre-
vious program executions (learning from a training set).

In detection mode, the task of a model is to return the
probability of occurrence of a system call argument value
based on the model’s prior training phase. This value re-
flects the likelihood that a certain feature value is ob-
served, given the established profile. The assumption is
that feature values with a sufficiently low probability (i.e.,
abnormal values) indicate a potential attack. To evaluate
the overall anomaly score of an entire system call, the
probability values of all models are aggregated.

An example of a model is the string length model. Usu-
ally, system call string arguments represent canonical file
names that point to an entry in the file system. These argu-
ments are commonly used when files are accessed (open,
stat) or executed (execve). Their length rarely exceeds
a hundred characters and they mostly consist of human-
readable characters.

When malicious input is passed to programs, it is of-
ten the case that this input also appears in arguments of
system calls. For example, consider a format string vul-
nerability in the log function of an application. Assume
further that a failed open call is logged together with the
file name. To exploit this kind of flaw, an attacker has to
carefully craft a file name that triggers the format string
vulnerability when the application attempts and subse-
quently fails to open the corresponding file. In this case,
the exploit code manifests itself as an argument to the
open call that contains a string with a length of several
hundred bytes.

The goal of the string length model is to approximate
the distribution of the lengths of a string argument and de-
tect instances that significantly deviate from the observed
normal behavior. To characterize normal string lengths,
the mean X̂ and the variance σ̂ 2 of the real string length
distribution are approximated by calculating the sam-
ple mean X and the sample variance σ 2 for the lengths
l1, l2, . . . , ln of the argument strings processed during the
learning phase. Then, in the detection phase, the actual
values of system calls parameters are compared to the
established profiles to determine if the observed value is
within the range of legitimate values.

Another example of a model is the character distribu-
tion model. This model captures the concept of a “nor-
mal” string argument by looking at its character distribu-
tion. The approach is based on the observation that strings
have a regular structure, are mostly human-readable, and
almost always contain only printable characters. A large
percentage of characters in such strings is drawn from a
small subset of the 256 possible 8-bit values (mainly from
letters, numbers, and a few special characters). As in En-
glish text, the characters are not uniformly distributed but
occur with different frequencies.

This model learns the “normal” character distribution
during a training phase. For each observed argument
string, its character distribution is stored. The “normal”
character distribution is then approximated by calculat-
ing the average of all stored character distributions. Then,
during detection, a statistical test is used to determine
the probability that the character distribution of an ar-
gument is an actual sample drawn from its established
profile.

In contrast to signature-based approaches, the char-
acter distribution model has the advantage that it cannot
be evaded by some well-known attempts to hide malicious
code inside a string. In fact, signature-based systems often
contain rules that raise an alarm when long sequences of
0 × 90 bytes (the nop operation on Intel ×86-based archi-
tectures) are detected. An intruder may substitute these
sequences with instructions that have a similar behavior
(e.g., add rA,rA,0, which adds 0 to the value in register
A and stores the result back to A). By doing this, it is possi-
ble to prevent signature-based systems from detecting the
attack. Such sequences, nonetheless, cause a distortion
of the string’s character distribution, and, therefore, the
character distribution analysis still yields a high anomaly
score.

The models described previously are just examples of
how it is possible to create a learning-based anomaly de-
tection system. There are a number of possible variations
on this scheme and this field is still the object of active
research.

A somewhat different approach is followed by RAD
(Apap et al., 2002), a system that uses as input the reg-
istry access events on MS Windows hosts. RAD uses an
attack-free history of accesses to the Windows registry to
build a statistical model of the normal behavior of appli-
cations with respect to registry interaction. The model is
then used to detect malicious applications that perform
anomalous operations on the registry. A major drawback
of this approach is that malicious software can damage
the operating system without modifying the registry at
all. Therefore, this system can only detect a subset of the
possible attacks.

In general, evasion is a problem of all intrusion detec-
tion systems but it becomes more relevant in the case of
anomalous detection techniques. The reason is that it is
difficult to define models that prevent an intruder from
performing attacks that stay within the limits of what is
considered “normal.” Such attacks, often called mimicry
attacks, can be possible because of design problems (Tan
& Maxion, 2002; Tan, Killourhy, & Maxion, 2002) or be-
cause of the poor quality of the input event stream. For
example, user modeling based on command line analy-
sis is well known for being prone to evasion attacks, in
which commands and application binaries are renamed
(or replaced) by an attacker to create a session that con-
forms perfectly to the established normal profiles (Maxion
& Townsend, 2002; Wang & Stolfo, 2003; Shonlau et al.,
2001). In general, if the auditing mechanism relied upon
by an intrusion detection system can be bypassed or mod-
ified by the attacker, then the design of the system will
detect only attackers who are not aware of the existence
of the intrusion detection system or who are not careful
enough to cover their tracks.



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION6

Specification-Based Approaches
Whereas learning-based anomaly detection systems build
models by monitoring application traces, specification-
based approaches define models a priori without using
dynamic program information. In their case, the models
are written manually or built by statically analyzing ap-
plication code.

An early specification-based technique that was based
on written specifications for events in distributed systems
was presented by Ko, Ruschitzka, and Levitt (1997). It was
later been refined by Bernaschi, Gabrielli, and Mancini
(2002) and Chari and Cheng (2002), in which the focus
was moved to system calls. Another system, called Janus
(Goldberg, Wagner, Thomas, & Brewer, 1996), creates a
restricted environment (called sandbox) for processes in
which all system call invocations are intercepted and ver-
ified with respect to a manually written specification. The
idea is to limit the potential damage that an attacker can
cause after successfully compromising a process. Yet an-
other approach, which is related to system call policies,
are software wrappers (Fraser, Badger, & Feldman, 1999;
Ko, Fraser, Badger, & Kilpatrick, 2000). Software wrap-
pers define policies based on state machines that operate
in kernel space. Whenever a system call is invoked, a num-
ber of wrappers are called to check whether the system call
itself and its arguments are permitted. Because the wrap-
pers dispose of state, it is possible to base decisions on a
series of system calls.

The use of static analysis techniques to determine sys-
tem call models was introduced by Wagner and Dean
(2001) and Wagner and Soto (2002). In this approach,
a call-graph model based on automata is used to char-
acterize the expected system call sequences. The initial
approach was extended by Giffin, Jha, and Miller (2004),
who present an alternative, more efficient model to rep-
resent “legal” sequence call sequences. The price that has
to be paid is the need to insert additional “checkpoint”
system calls into the program, which is realized via bi-
nary rewriting. Another system that uses static analysis
to extract a model of acceptable system calls is presented
by Feng et al. (2004). In this case, the call stack informa-
tion is used to better model the context in which normal
system call are executed.

Techniques that use specifications are usually not as
prone to reporting false alarms as their anomaly-based
cousins. That is, given a complete and accurate policy,
these systems perform very well. Unfortunately, the task
to produce such a policy for realistic applications and sce-
narios is not trivial.

APPLICATION-LEVEL INTRUSION
DETECTION
An important source of audit data for host-based intrusion
detection systems is the information provided directly by
applications. In the traditional sense, this data is read
from log files or other similar sources. However, other
techniques were developed where the integration between
the IDS and the monitored application is tighter. Applica-
tion audit data is rich, reliable, and very focused. There-
fore, it is easy to determine which program is responsible

for a particular event. On the downside, application data
is also very specific and different applications have to be
dealt with on an individual basis by the HIDS.

In the following section, we present application-level
audit data-gathering techniques. Then, different analysis
techniques that are based on this type of information are
described.

Audit Data Gathering
Most operating systems use centralized log files to provide
a central repository for both operating system and appli-
cation audit data. Besides the operating system log files
(discussed in the previous section), audit information is
also found in application-specific log files. Of particular
interest are error logs, because malicious activity often
causes side effects that are detected by an application’s
error-checking routines.

Application log files have the advantage that they can
contain very detailed information. However, their format
differs significantly among programs and intrusion detec-
tion systems need to be adapted to each individual appli-
cation. Another disadvantage is the fact that, by the time
the information is written to the log, the application has
completed the operation in question. Thus, the IDS can-
not act preemptively. In addition, the information avail-
able is often limited to a summary of a complete transac-
tion. Consider, for example, a Web request that is logged
in the common logfile format (CLF) as follows (taken from
Almgren & Lindqvist, 2001):

10.0.1.2 - - [02/Jun/1999:13:41:37 -0700]
"GET /a.html HTTP/1.0" 404 194

This log entry describes a request from the host with
IP address 10.0.1.2 that asked for the document a.html,
which, at that time, did not exist. The server sent back a
response containing 194 bytes. The log entry might not
contain all the information an IDS needs for its analy-
sis. Were the headers too long or otherwise malformed?
How long did it take to process the request? How did the
server parse the request? What local file did the request get
translated into? In some applications, logging can be cus-
tomized and can contain much more information. Never-
theless, in most systems not all internal information that
is needed to understand the interpretation of an operation
is available for logging. Furthermore, by enabling all log
facilities, the risk of running out of storage space for the
logs or incurring performance degradation is increased.

To remove some of the limitations of log files with re-
gard to audit data collection, application-integrated sys-
tems have been proposed (Almgren & Lindqvist, 2001).
In such systems, the IDS monitors the inner workings of
the application and analyzes the data at the same time
as the application interprets it. This offers an opportunity
to detect (and possibly stop) malicious operations before
their execution. By tightly integrating the IDS with the
application, more information can be accessed (e.g., local
information that is never written to a log file). Further-
more, one can expect an application-integrated monitor
to generate fewer false alarms, because it does not have
to guess the interpretation and outcomes of malicious op-
erations. For example, a module in a Web server can see



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

APPLICATION-LEVEL INTRUSION DETECTION 7

the entire HTTP request, including headers. The module
can determine to which file within the local file system
the request was mapped, and it can also determine if this
file will be handled as a CGI program (which is not visibleQ4

in either the network traffic or the log files), even without
parsing the configuration file of the Web server.

To successfully integrate an IDS into an application,
the application must provide a suitable interface. To this
end, some applications provide APIs or appropriate hooks
for call-back routines. In case the application is open-
source, another possibility is to extend the application
with suitable IDS functionality.

Taking the idea of application-integrated audit data
collection even further, honeypots were introduced.
Spitzner (2004) defines a honeypot as “an information
system resource whose value lies in unauthorized or il-
licit use of that resource.” In general, a honeypot is a host
or network intentionally configured with known vulnera-
bilities that are deliberately exposed to a public segment
of the network so as to invite an intrusion attempt. Hon-
eypots are useful in studying the behavior of attackers and
they are a way to delay and distract intruders away from
more valuable targets.

Honeypots are traditionally classified as low-
interaction or high-interaction honeypots, which specifies
the level of activity an attacker is allowed to perform.
Low-interaction honeypots have limited interaction, and
they normally work by emulating services and operating
systems. For example, an emulated file transfer protocol
(FTP) service listening on port 21 may just emulate a FTP
login, or it may support a few additional FTP commands.
The advantage of low-interaction honeypots is their sim-
plicity. These honeypots tend to be easier to deploy and
maintain, because the attacker never has access to a fully
functional operating system to attack or harm others.
The main disadvantage of low-interaction honeypots is
that they log only limited information and are designed to
capture known activity. Also, it is easier for an attacker to
detect a low-interaction honeypot. No matter how good
the emulation is, a skilled attacker can eventually detect
their presence. A well-known open-source low-interaction
honeypot is honeyd (Provos, 2004).

High-interaction honeypots are different from low-
interaction honeypots in that they attempt to fully emulate
the functioning of real OSs and applications. High-
interaction honeypots offer two advantages over low-
interaction honeypots. First, they can capture extensive
amounts of information and so make it possible to learn
the full extent of the intruder’s behavior, be it the in-
stallation of new rootkits or the establishment of in-
ternet relay chat (IRC) sessions. Second, because high-
interaction honeypots make no assumptions about how
an attacker will behave, they provide an open environ-
ment that captures all activity and so make it possible to
trap and learn from unanticipated behavior. On the down-
side, high-interaction honeypots can be more complex to
deploy and maintain.

Misuse-Based Approaches
One of the simplest signature-based systems that moni-
tors application audit data is Swatch. Swatch, the Simple

Watch daemon, is a program for UNIX system logging and
was written to monitor messages as they are written to a
log file via the UNIX syslog() utility. The idea is to keep
system administrators from being overwhelmed by large
quantities of log data. The tool monitors log files, filters
out unwanted data, and takes one or more user-specified
actions based upon patterns in the log. Swatch can moni-
tor information as it is being appended to the log file and
alert system administrators immediately to serious sys-
tem problems as they occur. The patterns are specified as
regular expressions.

A very similar system is LogSentry, which extends the
monitoring to other system log files such as the ones
produced by Psionic’s PortSentry and HostSentry, system
daemons, Wietse Venema’s TCP Wrapper and Log Dae-
mon packages, and the Firewall Toolkit by Trusted Infor-
mation Systems (TIS).

Another tool that also works by monitoring system log
files but that allows the specification of more complex at-
tack scenarios is logSTAT (Vigna, Valeur, & Kemmerer,
2003). Using the same STATL language previously intro-
duced, logSTAT applies the state transition analysis tech-
nique to the contents of syslog files.

WebSTAT (Vigna, Robertson, Kher, & Kemmerer,
2003), a tool related to logSTAT, extends the state transi-
tion analysis to application-specific log files, in particular,
the Web server log files created by Apache. Several attack
scenario have been implemented that include a malicious
Web crawler scenario, a pattern-matching scenario, a re-
peated failed-access scenario, and a buffer-overflow detec-
tion scenario.

One interesting attack scenario included with Web-
STAT is the cookie-stealing scenario. Cookies are a state
management mechanism for HTTP (defined in RFC 2965,
Kristol & Montulli, 2000) that is often used by Web ap-
plication developers to implement session tracking. The
cookie-stealing scenario detects if a cookie used as a ses-
sion ID is improperly utilized by multiple users. This is
often a manifestation of a malicious user attempting to
hijack the session of a legitimate user to gain unautho-
rized access to protected Web resources.

The scenario begins by recording the issuance or initial
use of a session cookie by a remote client by mapping the
cookie to an IP address. In addition, an inactivity timer is
simultaneously set. Subsequent use of the session cookie
by the same client results in a reset of the timer, whereas a
cookie expiration or session timeout results in the removal
of the mapping for that cookie. If, however, a client uses
the valid session cookie of another client, then an attack
is assumed to be underway and an alarm is raised.

The cookie-stealing scenario is interesting because it
underlines the need for state to detect certain classes of
attacks. Most intrusion detection systems are stateless,
meaning that each event is treated independently of oth-
ers. However, certain attacks only manifest themselves as
multiple steps in which each individual step is not intru-
sive per se. In the cookie-stealing scenario, the use of a
cookie by each client appears benign. Only by detecting
that two different clients share a single cookie can mali-
cious behavior can be identified.

As mentioned in the previous section, systems that op-
erate on application log files have only a limited view of



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION8

the operations performed by an application. This short-
coming is addressed by application-integrated systems.
Almgren and Lindqvist have developed an integrated
monitor to detect Web-based attacks against the Apache
Web server (2001). The tool is directly attached to the
Apache request pipeline, which consists of several stages
that a client request runs through. Each stage possesses
so-called hooks or callbacks that are used by the moni-
tor to give feedback to the server as to whether it should
continue executing the request.

The presented approach makes evasion techniques less
effective, because the view of the intrusion detection sys-
tem and the view of the server application are tightly inte-
grated. On the other hand, a disadvantage of this approach
is that by “in-lining” intrusion detection analysis, the per-
formance of the Web server is affected. In addition, the
proposed solution is tailored to a specific Web server (in
this case, Apache) and cannot be easily ported to different
servers.

Anomaly-Based Approaches
An application-based anomaly detection system creates
a profile of application behavior based on normal ap-
plication activity. This activity is usually expressed as
operations that an application performs. A profile can
be created by observing traces of normal activity or by
specifying all operations that an application is allowed
to perform. This section deals with learning-based sys-
tems that establish a description of normal behavior by
monitoring actual program executions. The following sec-
tion discusses approaches in which profiles are speci-
fied a priori, based on policies that determine acceptable
behavior.

An example of a system that monitors application be-
havior to create a profile of normal behavior is DIDAFIT
(detecting intrusions in databases through fingerprinting
transactions; Lee, Low, & Wong, 2002). This system worksQ5

by fingerprinting access patterns of legitimate database
transactions and using them to identify database intru-
sions (in particular, SQL injection attacks). The work ad-Q6

dresses the problem of learning the set of legitimate fin-
gerprints from database trace logs that contain the SQL
statements of benign transactions. To this end, the au-
thors developed algorithms that perform useful general-
ization of the training set. That is, the system summarizes
SQL statements into more general fingerprints and is ca-
pable of deriving possibly legitimate fingerprints that are
missing from the training data. In addition, it can identify
possibly malicious (so called “high-risk”) SQL statements
even in the training set.

Another example is a system that analyzes the interac-
tion of Web clients with Web-based applications (Kruegel
& Vigna, 2003). More precisely, this system analyzes client
queries that reference server-side programs, and it cre-
ates models for a wide-range of different features of these
queries. Examples of such features are access patterns of
server-side programs or values of individual parameters
in their invocation. Similar to the system call–based anal-
ysis presented previously, the tool derives automatically
the parameter profiles associated with Web applications
(e.g., the length and structure of request parameters). In

addition, the relationship between queries and the access
patterns of applications over time are also monitored.

Changes in access patterns can indicate attacks. When
an application is usually accessed infrequently but is sud-
denly exposed to a burst of invocations, this increase could
be the result of an attacker probing for vulnerabilities
or the result of an exploit that has to guess parameter
values. A single determined attacker can evade detection
by executing his actions slowly enough to keep the fre-
quency low. However, most tools used by less skilled in-
truders execute brute force attacks without stealthiness
in mind. Also, when the knowledge of a vulnerability be-
comes more widespread, many attackers independently
attempt to exploit the vulnerability and raise the total fre-
quency to a suspicious level.

Another pattern focuses on the order in which pro-
grams are accessed. Web-based applications are often
composed of a set of server-side programs, which, to-
gether, implement the application functionality. For ex-
ample, a shopping application may have a login program
to authenticate a user, a program to access a catalog, a
program to add items to a virtual cart, and a program to
perform checkout/payment. The nature of a Web-based
application may impose a well-defined ordering over the
invocation of its component programs. For example, a
user has to first login before being able to perform any
other transaction. Unusual order of program accesses can
indicate malicious behavior, such as an attacker attempt-
ing to bypass a login check and access a privileged pro-
gram directly.

Specification-Based Approaches
The specification of application behavior is usually done
at the system call interface (as described previously).
However, there have been also suggestions to formally
specify the normal behavior of an application by defin-
ing the input and output data that it exchanged with its
users.

For example, in Cheung and Levitt (2002), the speci- Q7

fication language VDM is used to create formal specifi-
cations that characterize the normal behavior of domain
name service (DNS) clients and servers. The aim was to
define a security goal of the DNS service, which states that
a name server should only use DNS data that is consis-
tent with data from name servers that manage the corre-
sponding domain (i.e., authoritative name servers). Based
on these specifications and to enforce the security goal,
a DNS wrapper was implemented that examines the in-
coming and outgoing DNS traffic between name servers
and resolvers. To detect messages that violate the secu-
rity goal, cooperation with the authoritative name servers
is required. Whenever a violating message is detected, it
is dropped. Using their wrappers, the authors were suc-
cessful in detecting DNS cache poisoning and spoofing
attacks. Of course, the approach can be extended to spec-
ify the format and content of messages exchanges by other
network service daemons.

Similar to wrappers for system calls, there are
application-based techniques that verify arguments of
shared library function calls (Balzer & Goldman, 1999).
Using mediators, it is possible to prevent library functions



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED IDSs VERSUS NETWORK-BASED IDSs 9

from being called, to modify their arguments, and to ad-
just their return values.

RELATED TECHNIQUES
A family of host-based tools that are considered related to
intrusion detection systems are integrity checkers. The task
of these tools is to detect whether certain monitored files
were tampered with. Although these systems are not intru-
sion detection systems in the classic sense, they are often
used to identify the activities of an intruder after a success-
ful compromise. A well-known integrity checker is Trip-
wire (Kim & Spafford, 1994). Tripwire is a program that
monitors key attributes of files that should not change,
including binary signature, size, and expected change of
size. To do so, file information and file content hashes are
stored in a custom database. Similar to Tripwire, Red-
Hat’s packet management system rpm can also be used
for integrity-checking tasks.

The limit of file system integrity checkers is the fact that
the analysis can only be reliably performed in an offline
fashion. That is, the file system has to be mounted by an
operating system that is known to be not compromised.
The reason is that integrity checkers rely on operating
system routines to access the file system. If the operat-
ing system itself is modified on a compromised host, the
checkers could be provided with incorrect information
that can lead them to conclude that no modifications have
occurred. Once the kernel is infected, it is very hard to de-
termine if a system has been compromised without the
help of hardware extensions such as the trusted platform
module (TPM).

A common occurrence after a successful intrusion
is the installation of a rootkit (Black Tie Affair, 1989).
A rootkit is a collection of “easy-to-use” tools that help
an intruder to hide her presence from the system admin-
istrator (e.g., log editors), to gather information about the
system and its environment (e.g., network sniffers), and
to ensure access at a later time (e.g., backdoored servers).
Often, these rootkits include modified versions of system-
auditing programs. These modified programs do not re-
turn any information to the administrator that involves
specific files and processes that are used by the intruder.

Rootkits that simply replace or modify system files or
intruders that manually change files can be detected by file
integrity checkers. Recently, however, kernel-level rootk-
its have emerged that can bypass file integrity checks by
modifying the kernel directly. Such rootkits (e.g., knark or
Adore; Stealth, 2003) operate within the kernel by modi-
fying critical data structures such as the system call table.
No modification of program binaries to conceal malicious
activity takes place anymore.

To detect kernel-level rootkits, a number of detection
tools have been developed that could also be considered
host-based intrusion detection systems. The most basic
techniques used by these systems include searching for
modified kernel modules on disk, searching for known
strings in existing binaries, or searching for configuration
files associated with specific rootkits. The problem is that
when a system has been compromised at the kernel level,
there is no guarantee that these detection tools will re-
turn reliable results. This is also true for signature-based

rootkit detection tools such as chkrootkit that rely on op-
erating system services to scan a machine for indications
of known rootkits.

To circumvent the problem of a possibly untrusted op-
erating system, rootkit scanners such as kstat, rkscan, and
St. Michael follow a different approach. These tools are
either implemented as kernel modules with direct access
to kernel memory, or they analyze the contents of the
kernel memory via /dev/kmem. Both techniques allow
the programs to monitor the integrity of important ker-
nel data structures without the use of system calls. For
example, by comparing the system call addresses in the
system call table with known good values (taken from
the /boot/System.map file), it is possible to identify hi-
jacked system call entries.

Another group of related tools, which have had the
most commercial success, are virus scanners. A computer
virus is a piece of software designed to make additional
copies of itself and spread from location to location, typ-
ically without user knowledge or permission. Virus scan-
ners are tools that scan a binary for the occurrence of
viruses (code fragments) that are known to perform ma-
licious actions. With the tremendous increase of Internet
virus activity, the importance of scanners has increased
dramatically. As a result, virus scanners are now virtually
ubiquitous, especially on Microsoft Windows platforms.

HOST-BASED IDSs VERSUS
NETWORK-BASED IDSs
Host-based IDSs have both advantages and disadvantages
when compared with network-based intrusion detection
systems. One advantage is that HIDSs can access semanti-
cally rich information about the operations performed on
a host, whereas NIDSs that analyze network traffic have
to reassemble, parse, and interpret the application-level
traffic to identify application-level actions. This is even
more evident when application-level traffic is encrypted.
In this case, a network-based monitor has to be equipped
with the key material needed to decrypt the traffic; other-
wise, the application-level information is not accessible.
Also, the amount of information that HIDSs have to pro-
cess is usually more limited, because the rate at which
events are generated by the OS and applications is smaller
than the rate at which network packets are sent over busy
links. A third advantage is that HIDSs are less prone to
evasion attacks because it is more difficult to desynchro-
nize the view that the intrusion detection system has of
the status of a monitored application with respect to the
application itself. Finally, a host-based intrusion detec-
tion system has a better chance of performing a focused
response because the process performing an attack can
sometimes be easier identified and terminated.

On the other hand, host-based IDSs suffer from a set
of limitations. A major disadvantage of HIDSs with re-
spect to NIDSs is that the compromise of a host may al-
low an attacker to disable or tamper with the auditing
system or even to disable the intrusion detection system
altogether. This problem is caused by the all-or-nothing
approach to privilege management followed by most op-
erating systems. Once a process obtains administrative



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION10

privileges, it is able to change any aspect of the system,
including the kernel configuration and the code stored
in programmable hardware. The other major disadvan-
tage of HIDSs is that the intrusion detection process may
affect substantially the performance of the operating sys-
tem, and, as a consequence, of the applications running on
a monitored host. A single network-based IDS can moni-
tor a number of host without affecting their performance.
In addition, a NIDS that monitors many hosts may detect
attacks that span multiple hosts. The evidence associated
with such attacks might be unavailable when monitoring
only a single host. The limited view of host-based systems
can be compensated for by combining information gath-
ered from different host-based sensors at a central loca-
tion. When data from different hosts is available, it is pos-
sible to correlate host-based data to get a more global view
(Kruegel, Valeur, & Vigna, 2004). However, for this cor-
relation process, a dedicated infrastructure is required.
One of the first systems that used correlation of data pro-
duced by multiple host-based sensors was DIDS (Snapp
et al., 1991). Finally, there is a maintenance cost associ-
ated with the deployment and maintenance of host-based
IDSs, which tends to be higher than the cost associated
with NIDSs because of the need to install an IDS on each
protected host and of the heterogeneity of most environ-
ments (different operating systems, and different versions
of the same operating system).

FUTURE TRENDS
In the past, host-based IDSs have not been considered a
viable solution to detect intruders because of their per-
formance overhead and their inability to deliver reliable
information in the case of a compromise. In addition, the
problem of the large number of false positives produced
by anomaly detection systems made it impossible to per-
form effective intrusion response (e.g., killing a process
that is misbehaving) without the risk of hurting legitimate
users of the system.

Recently, the interest in this class of intrusion detec-
tion systems has been boosted by increasingly more ef-
ficient detection techniques and the introduction of new
hardware-based mechanisms that guarantee the integrity
of a system even in the face of the compromise of a priv-
ileged account. This trend is also supported by firewall
technology, which, in the past few years, has gradually
moved from the gateway of a network to each single host
(e.g., the popular ZoneAlarm tool for Windows). These
new host-based firewalls are actually host-based intrusion
detection systems that analyze network data.

The next generation of HIDSs will probably integrate
host-based firewall technology, as well as other technolo-
gies, such as virus scanners and integrity checkers. The
resulting intrusion detection system will monitor several
event streams (e.g., network traffic directed to the host
and system calls executed by applications) and will be
able to correlate evidence that belongs to different do-
mains. These hybrid systems will be able to provide effec-
tive detection and very focused response at a reasonable
performance cost.

Another trend in host-based intrusion detection is
the progressive integration of intrusion detection mecha-
nisms into the kernel of the operating systems. Currently,

the OS is extended to gather auditing information but the
actual intrusion detection process is performed outside
the kernel, in user space. By integrating intrusion detec-
tion within the kernel itself, it is possible to perform much
more effective response, blocking suspicious operations
before they cause any actual harm. This type of systems
may be able to foil a wide range of attacks in an effective
manner.

There are still many challenges in developing sys-
tems that are tightly integrated with the operating sys-
tem kernel. The critical nature of the kernel leaves very
little room for mistakes and the failure of a single ker-
nel component can render the whole system unusable.
Therefore, kernel-level solutions have to be implemented
following a high-quality development processes to meet
the expectation of the user in terms of reliability and
performance.

CONCLUSIONS
For the plast decade, network-based intrusion detection
systems have clearly dominated host-based systems. The
ease of maintenance and the possibility to monitor several
targets with a single IDS installation has tipped the scales
toward the network-based solution. However, the increas-
ing use of very fast network links and encrypted con-
nections have change the situation. The quality of audit
data that is available at the operating system and applica-
tion levels, the increasing security awareness of end users,
and the improved accuracy of host-based techniques have
all contributed to a higher acceptance of such detection
mechanisms.

This chapter discussed host-based intrusion detec-
tion systems and related techniques such as file integrity
checkers and virus scanners. The main sources of au-
dit data (operating system and application) were in-
troduced and different approaches to analyze the data
were presented. In addition, we analyzed the advantages
and limitations of host-based solutions with regard to
network-based techniques and outlined possible future
developments in the field.

GLOSSARY
Anomaly-Based Intrusion Detection Intrusion detec-

tion techniques that rely on models of normal system
behavior to identify intrusions.

Audit A procedure used to validate that controls are in
place and adequate for their purposes. This includes
recording and analyzing activities to detect intrusions
or abuses into an information system.

Audit Data Data produced by an audit procedure.
File Integrity Checker A system that verifies that the

attributes and contents of files have not been modified
by unauthorized subjects.

Honeypot A host or network with known vulnerabilities
deliberately exposed to a public network.

Host-Based Intrusion Detection An intrusion detec-
tion system that uses audit data produced by the oper-
ating system and applications.

Intrusion Detection System A system that tries to iden-
tify attempts to hack or break into a computer system
or to misuse it.



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

REFERENCES 11

Intrusion Detection Evasion An attempt to perform an
attack such that it is not detected by the intrusion de-
tection system.

Mimicry Attack An evasion attack in which the intruder
attempts to make the attack appear like legitimate be-
havior.

Misuse-Based Intrusion Detection Intrusion detec-
tion techniques that rely on specifications (signatures)
of attacks to identify intrusions.

Network-Based Intrusion Detection An intrusion de-
tection system that uses audit data extracted from the
network.

Operating System Call The services provided by the op-
erating system kernel to application programs and the
way in which they are invoked.

Program Context The context at a certain point in the
program’s execution is the history of function calls
stored on the program stack at this time.

Rootkit A collection of tools that allows a hacker to
mask the fact that the system is compromised and to
collect additional information.

CROSS REFERENCES
See Computer Viruses and Worms; Intrusion Detection Sys-
tems Basics; Network-Based Intrusion Detection Systems;
Security Policy Guidelines; The Use of Agent Technology for
Intrusion Detection.Q8

REFERENCES
Almgren, M., & Lindqvist, U. (2001). Application-

integrated data collection for security monitoring. In
Recent advances in intrusion detection (RAID) (LNCS,
pp. 22–36). Davis, CA: Springer.

Apap, F., Honig, A., Hershkop, S., Eskin, E., & Stolfo,
S. (2002). Detecting malicious software by monitoring
anomalous windows registry access. In Proceedings of
the Fifth International Symposium on Recent Advances
in Intrusion Detection (RAID).

Balzer, R., & Goldman, N. (1999). Mediating connectors: A
non-bypassable process wrapping technology. In 19th
IEEE International Conference on Distributed Comput-
ing Systems.

Barbera, D., & Jajodia, S. (Ed.). (2002). Applications of
data mining in computer security. Kluwer.Q9

Bernaschi, M., Gabrielli, E., & Mancini, L. V. (2002).
REMUS: A security-enhanced operating system. ACM
Transactions on Information and System Security, 5(36).Q10

Black Tie Affair. (1989). Hiding out under UNIX. PhrackQ11

Magazine, 3(25).
Chari, S., & Cheng, P., (2002). BlueBoX: A policy-driven,

host-based intrusion detection system. In Symposium
on Network and Distributed System Security (NDSS),
San Diego, CA.

Cheung, S., & Levitt, K. (2002, June). A formal specifica-
tion based approach for protecting the domain name
system. In International Conference on Dependable Sys-
tems and Networks, New York, NY.

Crothers, T. (2002). Implementing intrusion detection
systems: A hands-on guide for securing the network.Q12

Wiley.

Daniels, T., & Spafford, E. (1999). Identification of host
audit data to detect attacks on low-level IP vulnerabil-
ities. Journal of Computer Security, 7(1), 3–35.

Denning, D. (1987, February). An intrusion detection
model. IEEE Transactions on Software Engineering,
13(2), 222–232.

Eckmann, S., Vigna, G., & Kemmerer, R. (2000, Novem-
ber). STATL: An attack language for state-based intru-
sion detection. In ACM Workshop on Intrusion Detec-
tion Systems, Athens, Greece.

Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., & Miller, B.
(2004, May). Formalizing sensitivity in static analysis
for intrusion detection. In IEEE Symposium on Secu-
rity and Privacy, Oakland, CA.

Feng, H., Kolesnikov, O., Fogla, P., Lee, W., & Gong, W.
(2003). Anomaly detection using call stack informa-
tion. In IEEE Symposium on Security and Privacy.

Forrest, S., Hofmeyr, S., Somayaji, A., & Longstaff, T.
(1996, May). A sense of self for UNIX processes. In
IEEE Symposium on Security and Privacy (pp. 120–
128), Oakland, CA.

Fraser, T., Badger, L., & Feldman, M. (1999). Harden-
ing COTS software with generic software wrappers. In
IEEE Symposium on Security and Privacy (pp. 2–16),
Oakland, CA.

Ghosh, A., Wanken, J., & Charron, F. (1998, December).
Detecting anomalous and unknown intrusions against
programs. In Annual Computer Security Application
Conference (ACSAC) (pp. 259–267), Scottsdale, AZ.

Giffin, J., Jha, S., & Miller, B. (2004, February). Efficient
context-sensitive intrusion detection. In Proceedings of
the Network and Distributed System Security Sympo-
sium (NDSS), San Diego, California.

Goldberg, I., Wagner, D., Thomas, R., & Brewer, E. (1996).
A secure environment for untrusted helper applica-
tions. In sixth Usenix Security Symposium, San Jose,
CA.

Habra, N., Le Charlier, B., Mounji, A., & Mathieu, I.
(1992, November). ASAX: Software architecture and
rule-based language for universal audit trail analysis.
In European Symposium on Research in Computer Se-
curity (ESORICS), Toulouse, France.

Ilgun, K., Kemmerer, R., & Porras, P. (1995). State transi-
tion analysis: A rule-based intrusion detection system.
IEEE Transactions on Software Engineering, 21(3), 181–
199.

Javitz, H. S., & Valdes, A. (1991). The SRI IDES statistical
anomaly detector. In IEEE Symposium on Security and
Privacy.

Kim, G., & Spafford, E. (1994). The design and imple-
mentation of tripwire: A file system integrity checker.
In second ACM Conference on Computer and Commu-
nications Security (CCS) (pp. 18–29), Fairfax, VA.

Ko, C., Ruschitzka, M., & Levitt, K. (1997). Execution
monitoring of security-critical programs in distributed
systems: A specification-based approach. In IEEE Sym-
posium on Security and Privacy (pp. 175–187), Oakland,
CA.

Ko, C., Fraser, T., Badger, L., & Kilpatrick, D. (2000). De-
tecting and countering system intrusions using soft-
ware wrappers. In Usenix Security Symposium.

Kristol, D., & Montulli, L. (2000). HTTP state management
mechanism (RFC 2965). Q13



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

HOST-BASED INTRUSION DETECTION12

Kruegel, C., Mutz, D., Valeur, F., & Vigna, G. (2003,
October). On the detection of anomalous system
call arguments. In Eighth European Symposium on
Research in Computer Security (ESORICS), (LNCS,
pp. 326–343). Gjøvik, Norway, Springer-Verlag.Q14

Kruegel, C., Valeur, F., & Vigna, G. (2004). Intrusion detec-
tion and correlation: Challenges and solutions. Norwell
MA: Springer Verlag.

Kruegel, C., & Vigna, G. (2003, October). Anomaly detec-
tion of Web-based attacks. In ACM Conference on Com-
puter and Communication Security (CCS) (pp. 251–
261). Washington, DC: ACM Press.Q15

Lee, S., Low, W., & Wong, P. (2002). Learning fingerprints
for a database intrusion detection system. In Seventh
European Symposium on Research in Computer Secu-
rity (ESORICS).

Lee, W., Stolfo, S., & Chan, P. (1997, July). Learning pat-
terns from unix process execution traces for intrusion
detection. In AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management.

Lindqvist, U., & Porras, P. A. (1999, May). Detecting
computer and network misuse with the production-
based expert system toolset (P-BEST). In IEEE Sympo-
sium on Security and Privacy (pp. 146–161). Oakland,
California.

Lunt, T. (1993). Detecting intruders in computer systems.
In Sixth Annual Symposium and Technical Displays on
Physical and Electronic Security.

Maxion, R., & Townsend, T. (2002, June). Masquerade de-
tection using truncated command lines. In Proceedings
of the International Conference on Dependable Systems
and Networks (DSN) (pp. 219–228). Washington, DC.

Mounji, A. (1997). Languages and tools for rule-based
distributed intrusion detection. Unpublished doctoral
dissertation Facultés Universitaires Notre-Dame de la
Paix Namur, Belgium.

Provos, N. (2003). Improving host security with sys-
tem call policies. In 12th Usenix Security Symposium.
Washington, DC.

Provos, N. (2004). A virtual honeypot framework. In 13th
Usenix Security Symposium.

Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M.,
& Vardi, Y. (2001). Computer intrusion: Detecting mas-
querades. Statistical Science, 16(1) 57–74.

Schultz, G., Endorf, C., & Mellander, J. (2003). Intru-
sion detection and prevention. New York: McGraw-Hill
Osborne Media.Q16

Sekar, R., Bendre, M., Bollineni, P., & Dhurjati, D. (2001,
May). A fast automaton-based method for detecting
anomalous program behaviors. In IEEE Symposium
on Security and Privacy. Oakland, CA.

Snapp, S. R., Brentano, J., Dias, G., Goan, T., Heberlein, T.,
Ho, C., et al. (1991). DIDS (distributed intrusion detec-
tion system)—Motivation, architecture, and an early
prototype. In 14th National Computer Security Confer-
ence.

Spitzner, L. (2004). Honeypots: Tracking hackers. Bostan,
MA: addison-Wesley.

Stealth. (2003, August). Kernel rootkit experiences and
the future. Phrack Magazine, 11(61).

Tan, K., & Maxion, R. (2002). “Why 6?” Defining the op-
erational limits of stide, an anomaly-based intrusion
detector. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (pp. 188–202). Oakland, CA.

Tan, K. M. C., Killourhy, K. S., & Maxion, R. A. (2002). Un-
dermining an anomaly-based intrusion detection sys-
tem using common exploits. In Proceedings of the 5th
International Symposium on Recent Advances in Intru-
sion Detection (pp. 54–73).

Vigna, G., Robertson, W., Kher, V., & Kemmerer, R. A.
(2003). A stateful intrusion detection system for World
Wide Web servers. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC 2003)
(pp. 34–43).

Vigna, G., Valeur, F., & Kemmerer, R. A. (2003). Design-
ing and implementing a family of intrusion detection
systems. In Proceedings of the European Software En-
gineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE
2003).

Wagner, D., & Dean, D. (2001, May). Intrusion detection
via static analysis. In IEEE Symposium on Security and
Privacy (175–187). Oakland, CA: May 2001. IEEE Press. Q17

Wagner, D., & Soto, P. (2002). Mimicry attacks on host-
based intrusion detection systems. In Ninth ACM Con-
ference on Computer and Communications Security
(CCS) (pp. 255–264).

Wang, K., & Stolfo, S. (2003). One class training for mas-
querade detection. In Proceedings of the ICDM Work-
shop on Data Mining for Computer Security (DMSEC).

Warrender, C., Forrest, S., & Pearlmutter, B. A. (1999). De-
tecting intrusions using system calls: Alternative data
models. In IEEE Symposium on Security and Privacy
(pp. 133–145).



P1: PDB

JWBS001C-184.tex WL041/Bidgoli WL041-Bidgoli.cls June 15, 2005 10:43 Char Count= 0

Author Queries

Q1: Au: define API?

Q2: Au : define SUID

Q3: Au: define USTAT+BSM?

Q4: Au: define CGI?

Q5: Au: check editing?

Q6: Au: define SQL?

Q7: Au: check year?

Q8: Au: Pls provide publisher, pub’s location pgs. URL
and Retrieved date of References.

Q9: Au: provide location?

Q10: Au : give pages?

Q11: Au: is “Black Tie Affair” part of title? Author, even?
Give pages?

Q12: Au: give Wiley’s location?

Q13: Au: For all RFSs, provide URL and retrieval date?

Q14: Au: give Springer’s location for Refs. 27+28?

Q15: Au: give ACM’s location?

Q16: Au: give McGraw-Hill location?

Q17: Au: give IEEE’S location + pages?

13


