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Abstract. The number of applications that are downloaded from the
Internet and executed on-the-fly is increasing every day. Unfortunately,
not all of these applications are benign, and, often, users are unsus-
pecting and unaware of the intentions of a program. To facilitate and
secure this growing class of mobile code, Microsoft introduced the .NET
framework, a new development and runtime environment where machine-
independent byte-code is executed by a virtual machine. An important
feature of this framework is that it allows access to native libraries to
support legacy code or to directly invoke the Windows API. Such native
code is called unmanaged (as opposed to managed code). Unfortunately,
the execution of unmanaged native code is not restricted by the .NET
security model, and, thus, provides the attacker with a mechanism to
completely circumvent the framework’s security mechanisms.

The approach described in this paper uses a sandboxing mechanism to
prevent an attacker from executing malicious, unmanaged code that is
not permitted by the security policy. Our sandbox is implemented as two
security layers, one on top of the Windows API and one in the kernel.
Also, managed and unmanaged parts of an application are automati-
cally separated and executed in two different processes. This ensures
that potentially unsafe code can neither issue system calls not permit-
ted by the .NET security policy nor tamper with the memory of the
.NET runtime. Our proof-of-concept implementation is transparent to
applications and secures unmanaged code with a generally acceptable
performance penalty. To the best of our knowledge, the presented ar-
chitecture and implementation is the first solution to secure unmanaged
code in .NET.

1 Introduction

With the growth of the Internet, applications are increasingly downloaded from
remote sources, such as Web sites, and executed on-the-fly. Often, little or no
knowledge exists about the author or her intentions. Therefore, users are suscep-
tible to executing potentially malicious programs on their computers. Malicious
programs contain code that executes in any unauthorized or undesirable way.



To secure users and increase the proliferation of mobile code, Microsoft re-
cently introduced a new development and runtime framework called .NET [5].
This framework leverages the previous experiences gathered with the Java vir-
tual machine concepts and includes a fine-grained security model that allows one
to control the level of access associated with software built upon .NET. These
applications are referred to as composed of managed code. The model signifi-
cantly limits the damage that can be caused by malicious code. To address the
important problem of backward compatibility and legacy code support, .NET
also offers a mechanism to tie in native libraries. These libraries, however, ex-
ecute outside of the .NET security model, and therefore are called unmanaged
code. As a consequence, the usage of this feature in .NET applications may al-
low an attacker to completely circumvent the framework’s security mechanisms,
leading to the unrestricted execution of arbitrary code. This security problem
is important because the use of unmanaged code will probably be common in
future Windows .NET applications. Millions of lines of legacy native Windows
code exist that will need to be integrated and supported over the next decade.
Also, software engineering research [10] has shown that it is not realistic to ex-
pect existing applications to be entirely rewritten from scratch in order to take
advantage of the features of a new language.

This paper describes our approach to extend the current .NET security model
to native (unmanaged) code invoked from .NET. To this end, we use a sandbox-
ing mechanism that is based on the analysis of Windows API and system call
invocations to enforce the .NET security policy. Our approach ensures that all
unmanaged code abides by the security permissions granted by the framework.
Our primary contributions are as follows:

– Extension of existing sandboxing methods to .NET unmanaged code invo-
cations.

– Two-step authorization of system calls by placing the security layer in the
Windows API and the enforcement mechanisms in a loadable kernel driver.

– Separation of untrusted native library and trusted managed code into two
separate processes by way of .NET remoting.

The paper is structured as follows. The next section provides an overview of
the .NET framework and its security-relevant components. Section 3 introduces
the design of our proposed system. Section 4 discusses the evaluation of the
security and performance of the system and shows that our approach is viable.
Section 5 presents related work. Finally, Section 6 outlines future work and
concludes the paper.

2 Overview of the .NET Framework

Microsoft’s .NET framework is an implementation of the Common Language
Infrastructure (CLI) [6], which is the open, public specification of a runtime
environment and its executable code. A part of the CLI specification describes
the Common Type System (CTS), which defines how types are declared and



used in the runtime. An important property of the .NET framework is that it
is type-safe. Type safety ensures that memory accesses are performed only in
well-defined ways, and no operation will be applied to a variable of the wrong
type. That is, any declared variable will always reference an object of either that
type or a subtype of that type. In particular, type safety prevents a non-pointer
from being dereferenced to access memory. Without type safety, a program could
construct an integer value that corresponds to a target address, and then use it as
a pointer to reference an arbitrary location in memory. In addition to type safety,
.NET also provides memory safety, which ensures that a program cannot access
memory outside of properly allocated objects. Languages such as C are neither
type-safe nor memory-safe. Thus, arbitrary memory access and type casts are
possible, potentially leading to security vulnerabilities such as buffer overflows.

The runtime environment can enforce a variety of security restrictions on the
execution of a program by relying on type and memory safety. This makes it
possible to run multiple .NET programs with different sets of permissions in the
same process (on the same virtual machine). To specify security restrictions, the
CLI defines a security model that is denoted as Code Access Security (CAS) [9].
CAS uses evidence provided by the program and security policies configured on
the machine to generate permissions set associated with the application. Secu-
rity relevant operations (for example, file access) create corresponding permission
objects, which are tested with respect to the granted permission set. If the per-
mission is not found in the granted set, the action is not permitted and a security
exception is thrown. Otherwise, the operation continues.

Managed code executes under the control of the runtime, and, therefore, has
access to its services (such as memory management, JIT compilation, or type
and memory safety). In addition, the runtime can also execute unmanaged code,
which has been compiled to run on a specific hardware platform and cannot
directly utilize the runtime. In general, developers will prefer managed code
to benefit from the services offered by the runtime. However, there are cases
in which unmanaged code is needed. For example, the invocation of unmanaged
code is necessary when there are external functions that are not written in .NET.
Arguably, the most important library of unmanaged functions is the Windows
API, which contains thousands of routines that provide access to most aspects
of the Windows operating system.

To support interoperability with existing code written in languages such as
C or C++ (e.g., the Windows API), the CLI uses a mechanism called platform
invoke service (P/Invoke). This service allows for invocation of code residing in
native libraries. Because code in native libraries can modify the security state
of the user’s environment, the .NET permission to call native code is equal to
full trust [18]. Furthermore, native code launched by P/Invoke is run within the
same process as the .NET CIL, and, as a consequence, malicious native code
could modify the state of the .NET runtime itself. Microsoft suggests to only
allow P/Invoke to be used to execute highly-trusted code. Unfortunately, users
generally cannot determine the trust level of an application and will likely grant
access also to non-trustworthy applications.



3 System Design

Our goal is to bring unmanaged native code invoked with P/Invoke from .NET
under the control of the CAS rule-set. That is, we aim to combine the flexibility
of unmanaged code with the security constraints enforced by managed code.
When unmanaged code is executed, we assume that the attacker has complete
control over the process’ memory space and the instructions that are executed.

As a first approach, one could attempt to use the on-board operating system
security model to enforce the desired .NET restrictions at the process level. That
is, the downloaded application together with its native components is launched
in a dedicated process. Then, operating system access control mechanisms are
employed to restrict the privileges of this process such that the .NET Code
Access Security settings are mirrored. Unfortunately, this is not easily possible.
One problem is that Microsoft’s Windows security model, though extensive, is
different from the CAS model. That is, Windows security permissions differ
from .NET permissions and do not provide a similar level of granularity. For
example, in the CAS model, it is possible to allow a program to append to a file
while simultaneously deny write access to the file’s existing parts. In Microsoft
Windows, on the other hand, the file system permissions have to be set to permit
write access for a process to be able to append to a file. As another example, one
can finely restrict network access to specific hosts using CAS, while this is not
possible using OS-level Windows security mechanisms. Furthermore, Windows
access control is based on user and role-based credentials. CAS, on the other
hand, is based on the identity of the code, via its evidence. A comparable concept
of evidence does not exist in the Windows security model. For example, it is
not possible to define Windows security based on the URL the program was
downloaded from.

Because the Microsoft Windows security mode is significantly different than
CAS, we propose a dedicated security layer to extend the .NET code access
security to unmanaged code. The goal of this security layer is to monitor the
actions performed by the unmanaged code and enforce those restrictions specified
by the CAS permission set. In the following sections, we discuss details about
the design and implementation of our security layer.

3.1 Security Layer

The first design decision is concerned with the placement of the security layer.
Ideally, this layer should be transparent to the application that it encapsulates.
Also, it requires full access to all security-relevant functions invoked by the ap-
plication (with parameters), so that sufficient information is available to make
policy decisions. Finally, it must be impossible for malicious code to bypass the
security layer.

The fundamental interface used by applications to interact with the envi-
ronment, and the operating system in particular, is the Windows API. The
Windows API is the name given by Microsoft to the core set of application pro-
gramming interfaces available in the Microsoft Windows operating systems. It



is the term used for a large set of user mode libraries, designed for usage by
C/C++ programs, that provide the most direct way to interact with a Windows
system. We can, therefore, expect all security-relevant operations, such as file
access, networking, memory, etc.3, to pass through the Windows API.

In a first step, we decided to place the security layer between the Win-
dows API and the native library. More precisely, we intercept calls to security-
relevant Windows API functions and evaluate their function parameters. Fortu-
nately, .NET security permissions map well to Windows API calls. Thus, we can
evaluate the parameters of Windows API calls by creating and checking corre-
sponding .NET permission objects. For example, we can evaluate the parameters
of the CreateFile4 API call and create a corresponding .NET permission ob-
ject representing the filename and the requested action (create or open). Then,
this permission object can be checked against the granted CAS permissions,
appropriately permitting or denying the request.

To intercept Windows API functions, we make use of Detours [14]. Detours is
a general purpose library provided by Microsoft for instrumenting x86 functions.
This is achieved by overwriting the first few instructions of a target function
with an unconditional jump to a self-provided function. Using this technique,
we create hooks in security-relevant functions of the Windows API. The hook
functions evaluate the parameters and create corresponding .NET permission
objects. These permissions are then tested against the permission set granted to
the application. If the requested action represented by the security permission is
not permitted, a security exception is thrown. A valid request is passed on to the
original Windows API call to perform the requested operation. By placing the
security layer on top of the Windows API, it is possible to make the mechanism
transparent to applications, and, in addition, it allows for comprehensive access
to security-critical functions and their arguments.

Unfortunately, an attacker who has access to native code has great flexi-
bility and can use a range of possible techniques to evade our naive security
layer. The main reason is that the Windows API is user-level code that can be
easily bypassed by interacting with the operating system directly. This could
be achieved, for example, by invoking functions from ntdll.dll, which is the
user space wrapper for kernel-level system calls, or by calling the system calls
directly with assembly code. Another attack vector that needs to be mitigated
is that parts of the .NET framework can be modified. Unmanaged code has
complete and unrestricted access to the virtual address space that it is executed
in. Unrestricted memory access can be leveraged by an attacker to overwrite
management objects of the .NET runtime. For example, the variables holding
the granted permission set could be modified. The attacker could also modify
executable parts necessary for security enforcement, or simply tamper with ob-
jects on the managed heap, thereby crashing other .NET threads running on
the same virtual machine. To protect from these kinds of attacks, the security

3 For details on the Windows API, refer to [25].
4 The name of this call is slightly misleading, as it is also used to open files.



layer has to shield the .NET runtime and concurrently executing processes from
tampering with their allocated memory.

In the following Section 3.2, we introduce our approach to prevent unmanaged
code from bypassing the Windows API when calling security-relevant functions.
Then, in Section 3.3, we discuss our techniques to protect memory objects of the
runtime from modifications.

3.2 Securing the Security Layer

In this section, we discuss our mechanism to prevent an attacker from bypass-
ing the Windows API. To this end, we require a mechanism that allows us to
enforce that certain user-mode library functions are called before corresponding
operating system calls are performed. This mechanism is a second security layer
that resides in kernel space. In a fashion similar to the previously mentioned
layer at the API level, this second layer intercepts and analyzes operating sys-
tem invocations. In particular, it enforces that each system call invocation must
first pass through our security layer in the Windows API. To this end, the func-
tions in the Windows API are modified such that subsequent system calls must
be authorized. That is, whenever a security relevant Windows API function is
invoked, this function authorizes the corresponding operating system calls that
it is supposed to make. To make sure that only the security layer can authorize
system calls (and not the native code controlled by the attacker), we have to
ensure (i) that the authorization call originates from the security layer and (ii)
that the security layer was not modified by the attacker. The mechanisms to
enforce these two conditions are explained in more detailed later.

When unsafe code attempts to bypass the checks in the first security layer and
performs a system call directly, the kernel space layer identifies this invocation as
unauthorized and can abort the operation. The kernel driver is the only trusted
component in the system, as it cannot be modified directly by a user process.
Thus, if the attacker circumvents the Windows API, the invoked system call is
not authorized and is therefore blocked by the driver.

Of course, the attacker could attempt to bypass the parameter evaluation in
the security layer and jump directly to the instructions that grant the system
call. We prevent this with a two-step authorization process. The check routine
in the security layer immediately grants authorization for the system call. The
parameters are then evaluated and, if any check fails, the security layer revokes
its authorization. Thus, to authorize a system call, the attacker must always
jump before the actual argument check routines and run through the entire
process. Figure 1 shows the two-step authorization process.

The second security layer is implemented as a device driver loaded directly
into kernel space. Russinovich [22] describes a method for hooking operating
system calls in Windows NT by replacing the function pointer in the system call
table. The driver employs this method to hook operating system calls and mon-
itors the invocation of these calls from the unmanaged code. The security layer
that resides at the Windows API level communicates with the kernel driver via
IOCTL messages. These messages allow user space applications to communicate



Fig. 1. Two-Step Authorization

with kernel-level drivers by passing buffers between them. In particular, IOCTL
messages are used to perform authorization and revocation of system calls.

As discussed previously, the system must not allow the native code to com-
municate with the kernel driver directly (via IOCTL messages). Otherwise, the
attacker could authorize (and later invoke) a certain system call without going
through the security layer. Thus, only the security layer can be allowed to grant
and revoke system calls. The problem is that both the security layer (at the Win-
dows API level) and the native code are executed in the same address space,
and it is not immediately obvious how a call from the security layer can be dis-
tinguished from one of the native code. To solve this problem, we permit IOCTL
calls only from Windows API library code segments (where the security layer is
implemented), and not from the native code itself (or from other segments such
as the heap or stack). To this end, the system call handler for the IOCTL call first
determines the address of the instruction that invoked the system call. If this
address is not in the code segment of a library, it is not forwarded to the kernel
driver. When the attacker attempts to jump directly to the instruction in the
library that authorizes a call, the two-step authorization process ensures that
arguments are checked properly. Otherwise, the authorization would be revoked
immediately.

In addition, the correct operation of the two-step authorization process relies
on the fact that the native code cannot alter the code executed by Windows API
functions. Otherwise, it would be easy for an attacker to rewrite the code parts



that check arguments or simply remove the statements that are responsible for
revoking authorization when a CAS policy violation is detected. Fortunately,
ensuring that code sections are not modified is relatively straightforward. The
reason is that executable code sections are stored in memory pages that are
marked execute-only. Thus, to modify these sections, the attacker must first
change the protection of the corresponding pages. To prevent this, the driver
hooks the system call that handles page protection modifications. Pages con-
taining executable code are typically marked as only PAGE EXECUTE. This pre-
vents reading or writing to any memory location in the page. To modify the
functions, an attacker would have to change the page protection to allow for
write access. To prevent this, we deny write modifications to any PAGE EXECUTE
pages. More precisely, we query the desired page protection before modification
and do not allow elevation to write access for any page that has the execute
flag set. This approach prevents an attacker from modifying executable code,
but still allows for dynamic library loading. When a library is loaded dynami-
cally, for example through the LoadLibrary call, memory is first allocated with
PAGE READWRITE protection [21]. After the library is loaded, the protection is
changed to PAGE EXECUTE. Because of this, the unmanaged code is effectively
prevented from writing to executable pages in memory.

The security of the whole system relies on the fact that a user process cannot
modify objects that reside in kernel space, and thus, cannot tamper with our
second security layer. The astute reader might wonder why the security layer was
placed in the Windows API in the first place, given the security advantages from
placing it in kernel space. One important reason is the absence of a published
documentation of the native API5, which is subject to changes without notice
even between different service packs of Windows. In contrast, the Windows API
is well-documented and explicitly designed to shield application code from sub-
tle changes of the native API. In addition, Windows API calls exist that map
to multiple system calls. In such cases, the Windows API function parameters
indicate the actual purpose of the invocation and checks are easier to perform
at the Windows API level than based on arguments of individual system calls.

As mentioned previously, unmanaged code cannot tamper with the driver
because it is located in kernel space. We can, therefore, use the driver as a
trusted storage for important data. In particular, to mitigate the danger of an
attacker modifying the CAS permission set, we safely store it in the trusted
storage. To this end, we serialize the permission set and store it in the driver
before we launch any native code. This is, again, achieved with IOCTL messages.
Note that permission sets are stored on a per-process basis. That is, multiple
processes with different permission sets can be sandboxed at the same time.
When checking a requested action, the security layer does not check against the
(possibly modified) permission set residing in .NET. Instead, the security layer
first retrieves the trusted permission set from the driver and then checks against
this set. Of course, the permission set stored in the driver cannot be modified

5 Even though [19] does an excellent job at documenting the native API, the docu-
mentation can never be complete without support from Microsoft.



directly by the unmanaged code through another IOCTL, because that invocation
would be trapped and checked with respect to the established permission set.

In the previous discussion, the two steps of granting and revoking autho-
rization were explained in the context of a process. However, when considering
multi-threaded applications, this two-step authorization process would contain
a race condition. This race condition can be exploited when one thread attempts
a particular forbidden call, while another thread attempts to sneak in the same
call between the time it is originally authorized and the time it is revoked. This
problem is solved by granting and revoking authorization for system calls on a
per-thread basis. That is, whenever the kernel driver is consulted to grant or re-
voke permissions for a system call, it checks the thread identified of the currently
running thread instead of its process ID.

3.3 Remoting

Using security layers and the two-step authorization process, the CAS protection
is successfully extended to unmanaged code. That is, the CAS model is enforced
by monitoring all relevant interaction with the operating system and the permis-
sion set is safely stored in the trusted kernel driver. Unfortunately, the objects
in the managed heap and data structures of the runtime can still be altered
by an attacker, possibly causing the virtual machine or other .NET threads to
crash or behave unexpectedly. Another problem is that there are system calls
invoked by the runtime (or certain managed classes) that do not necessarily pass
through the Windows API. Although these system calls are not authorized by
our security layer, they are still valid. Of course, these calls must be permitted
as blocking them would prevent managed classes from functioning correctly.

Remote
Object

Managed
Application

Remoting ServerManaged Application

Stubs Native
Library

by-valby-ref by-ref

by-val

Fig. 2. Remote Parameter Passing

To protect the managed heap of .NET threads (and the runtime) and to make
tracking of system calls easier, we isolate the unsafe code from the managed
code that invokes it. More specifically, we create a process boundary between
the managed code and the unmanaged code. Existing sandboxing techniques
consider the entire process untrusted. For our purposes, however, we must dis-
tinguish between managed and unsafe code, even though these run in the same
process. We therefore isolate the untrusted native library from the trusted man-
aged code by running them in two different processes. In this way, we leverage



the basic memory protection mechanisms offered by the operating system and
prevent unmanaged code from accessing memory allocated by managed code.

When the native, unmanaged parts of an application are executed in a process
different from the one where the managed part of the application resides, the
question naturally arises how communication between these processes is realized.
In particular, we need to explain how parameters and return values can be
exchanged between the process that runs managed code and the process with
the native code piece. While simple data types such as integers can be easily
passed (copied) between address spaces, the situation is more difficult when
complex data structures such as linked lists are involved. In these cases, the
data structures have to be serialized by the sender and appropriately rebuilt by
the receiver.

To accomplish the data exchange between the managed and the native pro-
cesses, we make use of .NET remoting, the Remote Procedure Call (RPC) mech-
anism of .NET. To use .NET remoting, two proxy libraries have to be generated.
The first proxy library contains the stubs for the native calls and is linked with
the managed part of the application. More precisely, this library acts as an in-
terceptor that replaces the original native library. It contains one method stub
for each function of the unmanaged code that the managed code can invoke.
Each method stub uses .NET remoting to invoke its corresponding method in
the second proxy library. The second proxy library, called remote object, ex-
poses a remote method for each function that the managed code uses in native
libraries. These remote methods then perform the actual invocation of the na-
tive library in the remote process. Conceptually, the .NET remoting process can
be viewed as an additional level of indirection between the managed code and
the native libraries. Instead of passing values directly to the native code via
the P/Invoke function, these values are first copied to the remote process using
.NET remoting and only there passed to the native library. Note that both proxy
libraries are automatically generated from the managed assembly. To this end,
we use a combination of .NET reflection and an analysis of the disassembly of
the intermediate language code. The goal is to obtain the required information
to generate the proxy libraries, namely, the number of parameters of each native
function and their respective types.

One problem that has not been discussed so far are parameters that are
passed by-reference from managed code to the native library. The problem is
that variables cannot be transfered across the process boundary with remoting
when they are by-reference. This is because pointer values have no meaning
outside the process address space. As a result, remoting parameters are always
passed by-value. However, P/Invoke allows for by-reference parameters and we
must take this into account. To solve this problem, we have to simulate by-
reference parameter passing by copying the variables back and forth by-value.
More precisely, the proxy library on the managed side transforms a by-reference
argument into the corresponding value that is then copied to the remote process.
Once the call into the native library is completed by the remote object, the stub
method requests the parameter variables back. Then, the reference parameters



are copied back into the original locations, as changes in the remote process
must be reflected in the original object. Figure 2 shows the process of simulating
by-reference parameter passing.

The remoting server (see Figure 2) hosts both the remote object (which
contains managed code) and the native library that should be confined. Before
the unmanaged code is executed, the remoting server has to perform a number
of initialization tasks. First, the Windows API hooks are installed to perform
API function monitoring. Then, the .NET security manager is used to generate
the granted permission set based on the evidence provided by the managed
application. This permission set is then serialized to an XML format and sent
to the trusted storage. Finally, the kernel driver has to be initialized. To this
end, the remoting server registers its own process ID for subsequent monitoring.
From that point onward, the remoting server process is subject to the CAS
policy enforcement and can no longer perform any unauthorized system calls.
Of course, the native library can freely tamper with the process memory and
possibly crash the virtual machine or return arbitrary results to the managed
code. However, such actions only affect this single process, while the managed
code and the runtime (together with other threads) is successfully shielded by
the process barrier. In particular, note that values returned by the unmanaged
code are automatically integrated into the .NET type system when received by
the proxy on the managed side. If values are returned that do not correspond to
valid types, the situation is detected and an appropriate unmarshaling exception
thrown.

4 Evaluation

To evaluate the proposed approach, we developed a proof-of-concept implemen-
tation of our system. Our prototype implements both the security layer at the
kernel level and the layer at the Windows API level. Also, we support running
the native process in a dedicated process with the automatic generation of the
.NET proxy libraries. The system extends CAS to the following areas: file access,
registry handling, and interaction with environment variables.

We investigated whether the current prototype achieves our stated goal of
extending .NET’s CAS mechanism to native libraries. We report on results of
our simulations of the attack methods discussed previously. We continue by
shedding light onto the performance penalty incurred by the design and conclude
with experiments that demonstrate that our system can successfully isolate the
native libraries of real-world applications.

4.1 Functionality

Functionality testing is directly linked to our stated goal. We would like to ensure
that native code cannot perform actions that are restricted by the code access
security (CAS) policy. For this purpose, we first constructed a CAS rule set that
denies access to a certain file. The check of the file name to enforce this policy



is performed in the CreateFile Windows API function, which in turn has to
authorize the invocation of the corresponding operating system call. Then, we
attempted to bypass our checks and illegitimately obtain access to this file.

In a first test, we attempted to bypass the Windows API function and called
NtCreateFile from ntdll.dll directly. As expected, our kernel-level security
layer denied the call as it was not authorized by the Windows API security
layer. In the second approach, we decided to avoid using libraries altogether
and used in-line assembly code to invoke system calls directly. Again, our kernel
driver prevented the system call invocation. Next, we simulated an attacker’s
attempt to subvert the runtime or the security layer. We simulated this attack
by attempting to modify an executable function. As expected, the driver hook
for page protection denied this modification.

The results obtained from our attacks indicate that our system works as
expected, and we successfully showed that all system call invocations must first
pass through the security layer, and the checks therein.

4.2 Performance

After testing the system’s functionality, we ran performance analysis to deter-
mine the overhead incurred by the security layer and, in particular, the remoting
infrastructure. To this end, we conducted a series of micro benchmarks to mea-
sure the performance overhead of individual calls to native library functions. All
experiments were run on a machine with an Intel Pentium 4 1.8GHz and 1GB
of RAM, running Windows XP with Service Pack 2.

We anticipated the .NET remoting infrastructure to incur the largest perfor-
mance penalty. To measure this penalty, we isolated the remoting infrastructure
from the remaining system. For this, we modified our remoting server to not
instantiate the security layer and to not interact with the driver. Our first test
library function takes no parameters and returns no variables. The test function
solely invokes the CreateFile function from kernel32.dll to create a file. The
remoting server is hosted on the same machine, preventing network delays from
skewing the results. The first entry (i.e., Test 1) in Table 1 compares the av-
erage running time over ten calls of a direct P/Invoke call to a call redirected
over .NET remoting. As we expected, the .NET remoting mechanism creates a
considerable performance penalty, which arises from the need to perform inter-
process communication. In our next test, we used the remoting server as outlined
in Section 3.3. That is, the security layer was in place and interacted with the
driver. Our test function was the same as above, i.e., it took no parameters and
returned no value. The second entry (i.e., Test 2) in Table 1 shows the average
running time over ten calls. The results indicate that our security layer intro-
duces no measurable performance penalty (less than one millisecond). Finally,
we investigated how parameter passing affects performance. To this end, our
next test compared the overhead produced by parameters in the .NET remoting
call. This overhead stems from the need to marshal arguments at the sender and
restore them at the receiver. The CreateFile call has seven parameters and



one return parameter, which need to be serialized and exchanged between pro-
cesses. The last entry (i.e., Test 3) in Table 1 shows that including parameters
exacerbates the performance penalty.

Table 1. P/Invoke vs. Remoting

Test Test Description Direct Call Remoting Call
(P/Invoke) (ms) (ms)

1 No Security Layer 15 234

2 Active Security Layer 15 234

3 Active Security Layer
+ Function Parameters 15 286

While the overhead of a remote procedure call is an order of magnitude
larger than invoking unmanaged code within a process, this is not surprising.
Also, note that the in-process P/Invoke call incurs significantly more overhead
than a regular function call. Thus, we do not expect this mechanism to be used
frequently by performance-critical applications and believe that the increase in
security clearly outweighs the performance loss.

4.3 Remoting

Another feature that we evaluated is the remoting infrastructure and the gener-
ated stub libraries. In particular, we want to ensure that we have not introduced
limitations on parameter passing and that we maintain transparency for man-
aged real-world applications that use native library components.

As mentioned in Section 2, an important reason for the introduction of
P/Invoke and the ability to include unmanaged code into .NET applications is
the need to call Windows API functions. Thus, we have to ensure that our protec-
tion infrastructure supports the invocation of (almost) all API functions. To test
the ability of our system to call Windows API functions, we selected a represen-
tative subset of ten routines from important areas such as process management,
file handling, and helper functions (all implemented in the kernel32.dll, the
core Windows kernel library). We then tested whether these functions can be
invoked from managed code running in a different process. We observed that our
design successfully passed the relevant parameters across the process boundary
via .NET remoting and invoked the native functions in the remote server pro-
cess. After invoking the respective function, possible return parameters were
successfully passed back to the original process.

Besides tests with Windows API functions, we also investigated our system
when running real-world managed applications that make use of native library
routines. To this end, we tested our infrastructure on two popular libraries: Sleep-
ycat Software’s Berkeley Database [23] and the OpenGL graphics library [20].

Berkeley Database (BDB) is an embedded database. This is, the database
engine component is compiled as a library and linked with the application. BDB



is officially available as libraries for multiple languages such as C, C++, and
Java. In addition, an unofficial C# wrapper [1] exists to port BDB to .NET.
This wrapper uses P/Invoke to call the functions of the original BDB library.
To test our system, we used the C# wrapper to invoke functions of the BDB
library. More precisely, our test application uses the C# BDB wrapper to open a
database, store and retrieve records, and close the database. Function parameters
include strings, integers and enums for supporting flags.

For testing OpenGL, we used a C# wrapper called CsGL [4] that encapsu-
lates a native OpenGL library. To test our prototype, we exercised basic OpenGL
functionality, such as filling the background of a window and drawing a rectangle.
However, because most OpenGL functions use a similar syntax, we are confident
that this covers the majority of OpenGL.

In both cases, our system automatically generated the necessary proxy li-
braries to split the managed part and the native library into two processes. That
is, instead of invoking unmanaged library functions directly with P/Invoke, the
parameters were first transfered to a remote process via .NET remoting. Only
there were the native functions executed (via P/Invoke). Also, in case where a
function returned a value, these values were properly returned to the managed
application. This demonstrates that our system can automatically and transpar-
ently isolate native components from managed code.

5 Related Work

The system presented in this paper uses a sandbox to confine the execution of po-
tentially untrusted applications. Sandboxing is a popular technique for creating
confined execution environments that has been of interest to systems researchers
for a long time.

An important class of sandboxing systems uses system call interposition to
monitor operating system requests. That is, system calls are intercepted at the
kernel interface. Then, these calls and their arguments are evaluated against se-
curity policies and denied when appropriate. Numerous approaches have been
proposed [2, 11, 17, 3] that implement a variation of a sandboxing mechanism
based on system calls. These approaches typically differ in the flexibility and
ease-of-use of the policy language and the fraction of system calls that are cov-
ered.

One problem with kernel-level sandboxing mechanisms is the need to install
the necessary policy enforcement infrastructure (e.g., kernel drivers or operating
system modifications). To circumvent this problem, techniques [15, 12] have been
proposed that rely on existing monitoring infrastructure in the kernel (e.g., APIs
used for tracing and debugging such as ptrace) to intercept system calls, which
are then processed by a monitor that resides in user space.

The main differences between our proposed approach and sandboxing tech-
niques that operate on system calls are twofold. First, we do not only analyze
the invoked system calls but can also force native code to go through user-mode
libraries first (in our case, Windows API functions) before invoking a system call.



That is, our two-step authorization process extends system call interposition to
user libraries. The second difference is that we distinguish between a trusted,
managed part and an untrusted, native part of an application, which originally
run together in the same address space. To protect the managed code from
malicious, unmanaged code, both parts have to be run in separated processes.

Forcing native code to go through user libraries can also be achieved with
program shepherding [16], a method for monitoring control flow transfers during
program execution to enforce security policies. The difference to our system is
that program shepherding cannot prevent data values from being overwritten,
a property that we obtain by executing managed and unmanaged code in two
separate address spaces.

Being at the boundary between potentially untrusted user programs and the
trusted kernel, system calls have received interest also from other areas of security
research. In particular, system calls have been extensively used for performing
host-based intrusion detection. To this end, specifications of permitted system
calls were either learned by observing legitimate application runs [8] or extracted
statically from the application [24, 7].

Finally, Herzog and Shahmehri [13] present an approach that extends the
Java policy syntax for resource control. While we do not extend the .NET policy
syntax per se, we extend its reach by applying it to native code.

6 Conclusions

The number of applications that are being downloaded from Web sites and au-
tomatically executed on-the-fly is increasing every day. Unfortunately, some of
these applications are malicious. The .NET framework provides a security mech-
anism called Code Access Security (CAS) to help protect computer systems from
malicious code, to allow code from unknown origins to run with protection, and
to help prevent trusted code from intentionally or accidentally compromising se-
curity. CAS succeeds in restricting undesired actions of managed code. However,
the permission to invoke unmanaged (i.e., native) code gives a potential attacker
complete freedom to circumvent all restrictions.

This paper introduced a system to extend the CAS rule-set to unmanaged
code. The evaluation of the proof-of-concept prototype of our proposed system
shows that our design is viable. In particular, we successfully extended the CAS
rule set to important Windows API functions. By confining a possible attacker
to using the Windows API, we subjected unmanaged code to our security layer.
Further, we successfully protected our system against possible attack vectors,
such as circumvention of the security layer and memory corruption. To the best
of our knowledge, the presented architecture and implementation is the first
solution to secure unmanaged code in .NET.
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