
Using Generalization and Characterization Techniques in the
Anomaly-based Detection of Web Attacks

William Robertson, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer
Reliable Software Group

Department of Computer Science
University of California, Santa Barbara

{wkr,vigna,chris,kemm}@cs.ucsb.edu

Abstract

The custom, ad hoc nature of web applications makes
learning-based anomaly detection systems a suitable
approach to provide early warning about the exploita-
tion of novel vulnerabilities. However, anomaly-based
systems are known for producing a large number of false
positives and for providing poor or non-existent infor-
mation about the type of attack that is associated with
an anomaly.
This paper presents a novel approach to anomaly-

based detection of web-based attacks. The approach
uses an anomaly generalization technique that automat-
ically translates suspicious web requests into anomaly
signatures. These signatures are then used to group re-
current or similar anomalous requests so that an admin-
istrator can easily deal with a large number of similar
alerts.
In addition, the approach uses a heuristics-based

technique to infer the type of attacks that generated the
anomalies. This enables the prioritization of the at-
tacks and provides better information to the adminis-
trator. Our approach has been implemented and eval-
uated experimentally on real-world data gathered from
web servers at two universities.

1. Introduction

In the past ten years, the World-Wide Web has
evolved from a system to provide access to static infor-
mation into a full-fledged distributed execution infras-

tructure. Web-based applications have become a popu-
lar way to provide access to services and dynamically-
generated information. The popularity of web-based ap-
plications, such as online shopping catalogs and web-
based discussion forums, is a result of the ease of de-
velopment, deployment, and access of this class of ap-
plications. Even network devices and traditional appli-
cations (such as mail servers) often provide web-based
interfaces that are used for administration as well as con-
figuration.
Unfortunately, while the developers of the software

infrastructure (that is, the developers of web servers and
database engines) usually have a deep understanding of
the security issues associated with the development of
critical software, the developers of web-based applica-
tions often have little or no security skills. These devel-
opers mostly focus on the functionality for the end-user
and often work under stringent time constraints, without
the resources (or the knowledge) necessary to perform a
thorough security analysis of the application code. The
result is that poorly-developed code, riddled with secu-
rity flaws, is deployed and made accessible to the whole
Internet.
Web-related security flaws represent a substantial

portion of the total number of vulnerabilities. This claim
is supported by an analysis of the vulnerabilities that
have been made public in the past few years. For exam-
ple, by analyzing the Common Vulnerabilities and Ex-
posures (CVE) entries from 1999 to 2005 [5], we iden-
tified that web-based vulnerabilities account for more
than 25% of the total number of security flaws. Note
that this is only a partial account of the actual number of
web-based vulnerabilities, since there are a number of

ad hocweb-based applications that have been developed
internally by companies to provide customized services,
and many of the security flaws in these applications have
not yet been discovered or made public.
Because of their immediate accessibility, poor secu-

rity, and large installation base, web-based applications
have become popular attack targets and one of the main
venues to compromise the security of systems and net-
works. Preventing attacks against web-based applica-
tions is not always possible, and, even when suitable
mechanisms are provided, developers with little security
training (or simply with little time) sometimes disable
security mechanisms “to get the job done.” Therefore,
prevention mechanisms should be complemented by ef-
fective intrusion detection systems (IDSs).
To detect web-based attacks, intrusion detection sys-

tems are configured with a number of “signatures” that
support the detection of known attacks. These systems
match patterns that are associated with the exploitation
of known web-related flaws against one or more streams
of events obtained by monitoring web-based applica-
tions [1, 14, 16, 21]. For example, at the time of writing,
Snort 2.3.3 [16] devotes 1064 of its 3111 signatures to
detecting web-related attacks. Unfortunately, it is hard
to keep intrusion detection signature sets updated with
respect to the new vulnerabilities that are continuously
being discovered. In addition, vulnerabilities may be in-
troduced by custom web-based applications developed
in-house. Developing ad hoc signatures to detect at-
tacks against these applications is a time-intensive and
error-prone activity that requires substantial security ex-
pertise.
Anomaly detection [6, 8, 9, 12] is an approach to in-

trusion detection that is complementary to the use of
signatures. Anomaly detection relies on models of the
normal behavior of users and applications to identify
anomalous activity that may be associated with intru-
sions. The main advantage of anomaly-based techniques
is that they are able to identify previously unknown at-
tacks. By defining the expected, normal behavior, any
abnormality can be detected, whether it is part of a
known attack or not.
Anomaly detection can be performed by applying

different techniques to characterize the normal behavior
of a target system. Of particular interest for the detection
of attacks against web-based applications are learning-
based techniques, which build a model of the normal

behavior of an application by observing the usage pat-
terns of the application during a training period. Once
the model of normal behavior is established, the IDS
switches to “detectionmode” and compares the behavior
of the application with respect to the model learned dur-
ing the training period, with the assumption being that
anomalous behavior is likely to be associated with an
intrusion (and that an intrusion will result in anomalous
behavior).
Learning-based techniques are particularly suitable

for the detection of web attacks, because they can detect
attacks against custom-developed code for which there
are no known signatures or attack models. These sys-
tems can also operate in unsupervised mode, with little
or no input from system administrators and application
developers. Therefore, they can be used by administra-
tors that have little security training.
For example, consider a custom-developed web-

based application called purchase, where the iden-
tifier of the item to be purchased (itemid parame-
ter) and the credit card type (cc parameter) are inserted
by the user in a client-side form and then validated by
a server-side application invoked through the Common
Gateway Interface [4]. A set of sample invocations
of the purchase application, as logged by the web
server, is shown in Figure 1. In this case, a learning-
based anomaly detection system can build a model of
the itemid and cc parameters that are passed to the
application by analyzing a number of normal purchase
transactions. The models could characterize the length
of the parameters, their character distribution, or their
structure. Once these models have been learned by an-
alyzing a number of samples, each subsequent invoca-
tion of the purchase application is compared to the
established models, and anomalies in the parameters are
identified. For example, the last entry in Figure 1 would
be identified as an attack, because the itemid param-
eter has a structure (and length) that is anomalous with
respect to the established models.
Even though anomaly-based detection systems have

the potential to provide effective protection, there are
two main problems that need to be addressed. First,
learning-based anomaly detection systems are prone to
producing a large number of false positives. Second,
anomaly detection systems, unlike misuse-based sys-
tems, only report that there is an anomaly without any
supporting description of the attack that has been de-

128.111.41.15 "GET /cgi-bin/purchase?itemid=1a6f62e612&cc=mastercard" 200
128.111.43.24 "GET /cgi-bin/purchase?itemid=61d2b836c0&cc=visa" 200
128.111.48.69 "GET /cgi-bin/purchase?itemid=a625f27110&cc=mastercard" 200
131.175.5.35 "GET /cgi-bin/purchase?itemid=7e2877b177&cc=amex" 200
161.10.27.112 "GET /cgi-bin/purchase?itemid=80d2988812&cc=visa" 200
...
128.111.11.45 "GET /cgi-bin/purchase?itemid=109agfe111;ypcat%20passwd|mail%20wily@evil.com" 200

Figure 1. Sample log entries associated with invocations of the purchase application. The last
entry represents an attack against the application.

tected.

The goal of the work reported in this paper is to over-
come both of these problems. We have developed a sys-
tem that is based on an “anomaly generalization” mech-
anism that derives a generalized representation of the
anomalies detected by a learning-based intrusion detec-
tion system. The result is an “anomaly signature” that is
used to identify further occurrences of similar anoma-
lies. Similar anomalies are grouped together and are
then analyzed by the administrator to determine if each
group, as a whole, is composed of false positives or ac-
tual attacks. If the alerts in a group are identified as
being false positives, then they can be dismissed with
a single decision, saving a considerable amount of the
administrator’s time. Also, the anomaly signature char-
acterizing the group can be used as a suppression fil-
ter to prevent further false positives or as a new training
data set to improve the anomaly detection models. If the
alerts in a group are identified as instances of an actual
attack, then these alerts can be used as the basis to either
identify and fix a security flaw or to develop a “tradi-
tional” attack signature.

To address the problem of poor attack explanatory
information, our system uses a heuristics-based tech-
nique to infer the type of attack that generated the
anomaly. Our previous experience with the detection of
web-based attacks showed that while custom-developed
server-side code might be exploited using unpredicted
attribute values, the type of exploitation often follows
specific rules. Therefore, we developed heuristics that
can identify common classes of attacks, such as buffer
overflows, cross-site scripting, SQL injection, and di-
rectory traversals. Note that this characterization is dif-
ferent from a misuse detection signature, because our
heuristics are applied only to the portion of an event that

caused the anomaly (e.g., the value of a specific param-
eter). Therefore, if there are other parts of the data that
could appear as an attack but that are actually benign
(that is, they are normal according to the established pro-
file), then our characterization will not generate a false
positive, while a misuse detection signature probably
would.
In summary, our anomaly detection system can be de-

ployed on an existing web-based system, and in an un-
supervised fashion can characterize the normal behavior
of server-side components. It can then detect deviations
from the established profile, group similar anomalies,
and, in some cases, give an explanation of the type of
attack detected.
This paper is structured as follows. Section 2 dis-

cusses related work and the limitations of current in-
trusion detection systems in their ability to detect web-
based attacks. Section 3 presents the architecture for our
system and briefly describes its main components. Sec-
tion 4 presents the anomaly models used by the anomaly
detector. Section 5 describes our approach to anomaly
generalization. Section 6 discusses the characterization
of certain types of anomalies and the heuristics that we
use. Section 7 provides an evaluation of the approach
in terms of the overhead introduced, the reduction in the
number of false positives, and the ability to appropri-
ately characterize attacks. Finally, Section 8 draws con-
clusions and outlines future work.

2. Related Work

The work presented here is related to three different
areas of intrusion detection: learning-based anomaly de-
tection, application-level intrusion detection, and the de-
tection of attacks against web servers. In the following,

we discuss how previous work in these three areas relate
to our research.
Different types of learning-based anomaly detection

techniques have been proposed to analyze different data
streams. A common approach is to use data-mining
techniques to characterize network traffic. For exam-
ple, in [15], the authors apply clustering techniques to
unlabeled network traces to identify intrusion patterns.
Statistical techniques have also been used to character-
ize user behavior. For example, the seminal work by
Denning [6] builds user profiles using login times and
the actions that users perform.
A particular class of learning-based anomaly detec-

tion approaches focuses on the characteristics of spe-
cific applications and the protocols they use. For ex-
ample, in [7] and in [3], sequence analysis is applied to
system calls produced by specific applications in order
to identify “normal” system call sequences for a certain
application. These application-specific profiles are then
used to identify attacks that produce previously unseen
sequences. As another example, in [13], the authors use
statistical analysis of network traffic to learn the nor-
mal behavior of network-based applications. This is
done by analyzing both packet header information (e.g.,
source/destination ports, packet size) and the contents of
application-specific protocols.
Our approach is similar to these techniques because

it characterizes the benign, normal use of specific pro-
grams (i.e., server-side web-based applications). How-
ever, our approach is different from these techniques in
two ways. First, we use a number of different mod-
els to characterize the parameters used in the invocation
of the server-side programs. By using multiple models
it is possible to reduce the vulnerability of the detec-
tion process with respect to mimicry attacks [18, 23].
Second, the models target specific types of applications,
and, therefore, they allow for more focused analysis of
the data transferred between the client (the attacker) and
the server-side program (the victim). This is an advan-
tage of application-specific intrusion detection in gen-
eral [10] and of web-based intrusion detection in partic-
ular [11].
The detection of web-based attacks has recently re-

ceived considerable attention because of the increas-
ingly critical role that web-based applications are play-
ing. For example, in [1] the authors present a system that
analyzes web logs looking for patterns of known attacks.

A different type of analysis is performed in [2] where the
detection process is integratedwith the web server appli-
cation itself. In [21], a misuse-based system that oper-
ates on multiple event streams (i.e., network traffic, sys-
tem call logs, and web server logs) was proposed. Sys-
tems that focus on web-based attacks have demonstrated
that by taking advantage of the specificity of a particular
application domain it is possible to achieve better detec-
tion results. However, these systems are mostly misuse-
based and therefore suffer from the problem of not being
able to detect attacks that have not been previously mod-
eled.
In [19], the authors propose a serial architecture

where web-related events are first passed through an
anomaly detection component. Then, the events that are
identified as neither normal nor intrusive are passed on
to a misuse detection component. The system proposed
in [19] is different from our approach because it requires
extensive manual analysis to evaluate the characteristics
of the events being analyzed. Our goal is to require the
minimum amount of manual inspection and human in-
tervention possible. Therefore, we focus on techniques
to perform unsupervised, learning-based anomaly detec-
tion.

3. Architecture

The goal of detecting unknown attacks against
custom-developed software as well as characterizing
and grouping these attacks in a meaningful way ne-
cessitated the development of a novel approach to in-
trusion detection. In this approach, an event collector
and anomaly detection component are composed to pro-
vide the ability to detect unknown attacks. In addition,
three new components, an anomaly aggregation compo-
nent, an anomaly signature generation component, and
an attack class inference component, are introduced into
the architecture. The integration of these components
into the design allows the resulting system to harness
the strengths of anomaly detection while mitigating its
negative aspects. An overview of the architecture is de-
picted in Figure 2.
The event collector first creates and normalizes the

events. The normalized events are then passed to the
anomaly detector, which determines whether the event
is anomalous or not. If an event is normal, no alert is
generated. If the event is anomalous, on the other hand,

Event
Collection

Access
Logs

Anomaly
Detection

Anomaly
Aggregation

Anomaly
Signature

Generation

Attack
Class

Inference

Grouped
Alerts

Normal
Events

Event
Anomalous

Event
Unmatched

Event

Matched
Event

Initial
Group
Event

Anomaly Signature
and Event

Classified
Signature

Figure 2. Architecture of web intrusion detection system.

it is passed to the anomaly aggregation component. This
component matches the event against a set of “anomaly
signatures.” The idea is to determine whether an event
is similar to a previously detected anomaly. If an event
can be matched with an anomaly signature, an alert is
generated immediately and grouped with instances of
previous similar alerts. Otherwise, the event is passed
to the anomaly signature generation process. The task
of this component is to generalize the anomaly and to
construct an appropriate “anomaly signature.” Finally,
the attack class inference component attempts to deter-
mine the class of the anomaly, using a set of heuristics.
The resulting, classified anomaly signature is added to
the set of existing “anomaly signatures,” and an alert is
generated for the anomalous event. The individual com-
ponents of the architecture are discussed in more detail
in the following sections.

3.1. Event Collection

The event collection component is responsible for
capturing and preparing individual events from the op-
erating environment, for analysis by the intrusion detec-
tion components. Events may be collected from several
sources (e.g., a network link, a system call auditing facil-
ity embedded into a web server’s host operating system,
or the access logs generated by a web server). For the
work presented in this paper, the events were collected
from web server access logs, but the approach itself is
agnostic as to the source of the events.

3.2. Anomaly Detection

The anomaly detection component examines the sub-
set of web server access log entries that represent pa-
rameterized web requests. These requests specify a web
application and a set of attribute names and correspond-
ing values to be passed as parameters to the application.
During an initial learning phase, the anomaly detector
constructs a characterization of normal invocations of
server-side applications by analyzing the observed at-
tribute values. This process is performed using several
different models, each of which focuses on a specific
feature of an attribute (e.g., its length or its character dis-
tribution). These models are used to construct profiles
specific to each attribute for each server-side resource.
For example, an attribute length model could be used
to build a profile that specifies the normal length of the
value for the attribute itemidwhen used in the invoca-
tion of the purchaseweb application in Figure 1. The
details of this process are discussed in Section 4.
Once a profile for an attribute of a web application

has been constructed, the anomaly detection component
switches from the learning phase to the detection phase
for that attribute. In this phase, the anomaly detector
evaluates the observed values of the attribute for a given
request with respect to the established profile. This pro-
cess outputs an anomaly score associated with the re-
quest, and if the anomaly score exceeds a model-specific
detection threshold, an alert is generated. The assump-
tion is that highly anomalous queries (e.g., a request

where the value of the itemid attribute of the afore-
mentioned purchase application is unusually long)
could represent evidence of an attempt to exploit a vul-
nerability of a web-based application. By utilizing an
anomaly detection component that automatically builds
profiles for web applications in this manner, it is possible
to detect previously unknown attacks without requiring
the development of ad hoc signatures.

3.3. Anomaly Aggregation

The anomaly aggregation component processes the
stream of anomalous events from the anomaly detector,
matching them against a set of anomaly signatures main-
tained within the component. This signature set is mod-
ified at run-time; in particular, new signatures produced
by the anomaly signature generation and attack class in-
ference components can be dynamically integrated into
the existing set in the midst of event processing. If an
event (or series of events, in the case of a stateful, multi-
step anomaly signature) matches an anomaly signature
in this set, an alert is generated and grouped with previ-
ous instances of similar alerts.

3.4. Anomaly Signature Generation

Anomalous events that are not matched by any
anomaly signature in the anomaly aggregation compo-
nent are forwarded to the anomaly signature generation
component. The task of this component is to construct a
generalized anomaly signature that is based on the par-
ticular anomaly and the web application and attribute
that was the target of the request. The generated sig-
nature is used to match further manifestations of the
same, or similar, anomaly. Note that a distinction must
be made between misuse signatures and anomaly sig-
natures. In our nomenclature, a misuse signature de-
scribes a specific instance of a known attack, whereas
an anomaly signature is a set of statistical models of
suspected malicious behavior for a specific target that
has been derived from an alert generated by an anomaly
detector.

3.5. Attack Class Inference

In certain cases, a signature can be further classified
as belonging to one of several broad, generic classes of

known attacks against web-based applications. In our
system, these classes currently include buffer overflows,
cross-site scripting, SQL injection, and directory traver-
sal. The task of the attack class inference component is
to use a set of heuristics to assign an attack class to an
anomaly signature.
The classification of attacks can result in semanti-

cally rich anomaly alerts that are more informative to
security administrators, as well as to web application
developers. These alerts not only pinpoint the vector
through which the application is being attacked (i.e., the
specific attribute), but the nature of the attack as well.
This can assist the security administrator or application
developer in quickly mitigating the vulnerability, as the
nature of the attack itself generally suggests the required
course of action.
The following sections examine the details of how

each of these components are implemented.

4. Anomaly Detection

The anomaly detection component utilizes a number
of statistical models to identify anomalous events of a
set of web requests that use parameters to pass values
to an associated web application. The original prototype
and the models used to characterize the requests were
introduced in [11] and are summarized here to give to
the reader the background necessary to understand the
generalization techniques presented in Section 5.
The anomaly detection component operates on the

URLs extracted from successful web requests, as pro-
vided by the event collector. The set of URLs is fur-
ther partitioned into subsets corresponding to each web
application (that is, each server-side component). The
anomaly detector processes each subset of queries inde-
pendently, associating models with each of the attributes
used to pass input values to a specific server-side appli-
cation.
The anomaly detectionmodels are a set of procedures

used to evaluate a certain feature of a query attribute, and
operate in one of two modes, learning or detection. In
the learning phase, models build a profile of the “nor-
mal” characteristics of a given feature of an attribute
(e.g., the normal length of values for an attribute), set-
ting a dynamic detection threshold for the attribute. Dur-
ing the detection phase, models return an anomaly score
for each observed example of an attribute value. This is

simply a probability on the interval [0, 1] indicating how
probable the observed value is in relation to the estab-
lished profile for that attribute (note that a score close to
zero indicates a highly anomalous value).
Since there are generally multiple models associated

with each attribute of a web application, a final anomaly
score for an observed attribute value during the detec-
tion phase is calculated as the weighted sum of the in-
dividual model scores. If the weighted anomaly score is
greater than the detection threshold determined during
the learning phase for that attribute, the anomaly detec-
tor considers the entire request anomalous and raises an
alert.
The following sections briefly describe the imple-

mentation of themodels utilized by the anomaly detector
component. For more information on the models them-
selves as well as the anomaly detector as a whole and its
evaluation on real-world data, please refer to [11].

4.1. Attribute Length

The attribute lengthmodel is based on the assumption
that many attribute values do not vary greatly in length,
being either fixed in size or of a short length. Malicious
input, however, often violates this assumption, such as in
the case of a buffer overflow which must pass a string,
often containing shellcode, that is long enough to over-
flow the target buffer in order to assume control of the
vulnerable process. Thus, the attribute length model at-
tempts to approximate the actual, yet unknown, distribu-
tion of the attribute lengths. This is accomplished during
the learning phase by calculating the sample mean µ and
variance σ2 for each attribute value observed. During
the detection phase, the probability that a given attribute
length l is drawn from the actual distribution of attribute
lengths is calculated using the formulation based on the
Chebyshev inequality, where l is the observed attribute
length, µ is the sample mean, and σ2 is the sample vari-
ance.

p (|x− µ| > |l − µ|) < p (l) =
σ2

(l− µ)2

The weak bound enforced by the Chebyshev inequal-
ity results in a high degree of tolerance to variations in
attribute length, flagging only obvious outliers as suspi-
cious.

4.2. Character Distribution

The character distribution model is motivated by the
observation that attribute values generally have a regu-
lar structure, are usually human-readable, and usually
only contain printable characters. In particular, values
for a given attribute can be expected to have similar
character distributions, where a character distribution is
composed of the relative frequencies of each of the 256
ASCII character values sorted in descending order. For
legitimate inputs, the relative character frequencies are
expected to slowly decrease in value. Malicious input,
however, can exhibit either an extreme drop-off due to
large occurrences of a single character, or little drop-off
due to random character values.
During the learning phase, the idealized character

distribution, or ICD, of an attribute is calculated by first
recording the character distribution for each observed
example. Before switching to the detection phase, the
average of all recorded character distributions for that
attribute are computed. During the detection phase, the
probability that the character distribution of an observed
attribute value is drawn from the calculated ICD for
that attribute is determined using a variant of the Pearson
χ2-test.

4.3. Structural Inference

The structural inferencemodel derives its power from
the observation that legitimate attribute values can of-
ten be considered as strings generated from a regu-
lar grammar. For instance, a subset of legal path-
names could be generated from the regular expression
(/|[a-zA-Z0-9])+, i.e., a series of alphanumeric
characters interspersed with path separators. The gen-
erating grammar for an attribute, however, is unknown,
and thus it is necessary to construct a reasonable approx-
imation for the true grammar. This is accomplished dur-
ing the learning phase by considering the observed at-
tribute values as the output of a probabilistic grammar,
which is a grammar that assigns probabilities to each of
its productions. The probabilistic grammar captures the
notion that some strings are more likely to be produced
than others, and should correspond to the set of exam-
ples gathered during the learning phase.
The construction of such a grammar is accomplished

by the application of the algorithm described in [17].

This algorithm first constructs a nondeterministic finite
automaton (NFA) that exactly reflects the input data, and
then gradually merges states until a reasonable gener-
alization from the starting grammar is found, at which
point state merging terminates. The goal is to find a mid-
dle ground between the over-simplified starting gram-
mar, which is only able to derive the learned input, and
an over-generalized grammar which is capable of pro-
ducing all possible strings (in which case all structural
information has been lost). The resulting NFA asso-
ciates probability values with each of the symbols emit-
ted and the transitions taken between states, with the
probability of a single path through the automaton be-
ing the product of those probabilities.

During the detection phase, the probability that an
observed attribute value has been generated from the
true generating grammar for that attribute is calculated
as the product of the probabilities for the symbols emit-
ted and transitions taken along a path through the NFA.
If no path is possible, the observed value cannot be de-
rived from the probabilistic grammar, and a probability
of 0 is returned.

4.4. Token Finder

The token finder model depends on the observation
that some attributes expect values drawn from a lim-
ited set of constants, such as flags or indices. Thus, this
model detects when an attacker attempts to use these at-
tributes to pass values not contained in the legal set to the
application. During the learning phase, the set of unique
values for a given attribute are recorded. If the size of
this set grows proportionally to the total number of ob-
served instances of the attribute, the expected values for
the attribute are assumed to be random. Otherwise, the
model assumes that the attribute expects an enumeration
of values. During the detection phase, if the attribute has
been determined to accept an enumeration of values, ob-
served attribute values are tested for membership in the
set recorded during the learning phase. If the observed
value is present, then the model assumes that the value is
innocuous. Otherwise, the observed value is considered
anomalous.

5. Anomaly Generalization

Anomaly generalization is the process of transform-
ing the parameters of a detected anomaly into an ab-
stract model that will be used to match similar anoma-
lies, where the similarity metric is model-dependent.
More precisely, when one or more of the attribute val-

ues of a web request are detected as anomalous by one or
more models, the detection parameters for the attributes
and models involved are “relaxed” and composed in an
anomaly signature that identifies possible variations of
an attack. For example, if the attribute itemid of the
purchase web application shown in Figure 1 is de-
tected as anomalous because of its character distribu-
tion, then the generalization process will create an ab-
stract model that matches character distributions for the
itemid attribute that are somewhat similar to the one
that triggered the anomaly.
Note that the generalization process and the genera-

tion of anomaly signatures is not driven by examples of
known attacks, but by the relaxation of the parameters
used by the anomaly models. Therefore, these anomaly
signatures are not derived from (or associated with) a
specific exploitation technique.
The following sections describe the details of how

our system generalizes anomalies detected by each of
the models discussed in Section 4, and how these gener-
alized anomaly signatures are used during the anomaly
aggregation phase.

5.1. Attribute Length

The attribute length model stores the approximate
length distribution of an attribute derived during the
learning phase as a sample mean µ and variance σ 2.
When the length of a given attribute value is detected
as anomalous, the values of µ and σ2 for that attribute
are extracted from the model. These parameters are then
used to create an anomaly signature, which determines
whether lengths for the same attribute value are similarly
anomalous.
To this end, we introduce a similarity operator

ψattrlen (lobsv, lorig) where

ψattrlen ≡
∣
∣
∣
∣
∣

σ2

(lobsv − µ)2
− σ2

(lorig − µ)2

∣
∣
∣
∣
∣
< dattr

This operator is adapted from the Chebyshev inequal-
ity test and is used during the anomaly aggregation phase
to determine whether the anomaly score of an observed
attribute length lobsv falls within some configurable dis-
tance dattr from the anomaly score of the anomalous
attribute length lorig that was originally used to generate
the anomaly signature.

5.2. Character Distribution

The character distribution model stores the ideal-
ized character distribution (ICD) of an application’s
attribute, and then, during the detection phase, it ap-
plies the Pearson χ2-test to determine the normality of
an attribute’s character distribution. If the distribution
is flagged as anomalous, the parameters that are neces-
sary to create the generalized anomaly signature are ex-
tracted in one of two ways, depending on the nature of
the anomaly.

1. If the observed character distribution exhibits a
sharp drop-off, which indicates the dominance
of a small number of characters, a configurable
number of the character values that dominate
the distribution are used to construct the gener-
alized signature. More formally, the set C =
{(c1, f1) , (c2, f2) , . . . , (cm, fm)} is constructed,
where ci is the ith dominating character value, fi

is the corresponding relative frequency, and C is
the set of m dominating character values and fre-
quency pairs extracted from the model. During
the anomaly aggregation phase phase, the similar-
ity of an observed character distribution with re-
spect to the original anomalous character distribu-
tion is tested by analyzing the intersection between
Cobsv and Corig , where Cobsv is the set of domi-
nating characters from the observed attribute value
andCorig is the corresponding set from the original
anomalous value. If Cobsv ∩ Corig �= ∅, we intro-
duce a similarity operator ψcdist (fobsv,i, forig,j)
where

ψcdist ≡ |fobsv,i − forig,j | < dcdist

and

(cobsv,i, fobsv,i) , (corig,j , forig,j) ∈ Cobsv ∩Corig,

cobsv,i = corig,j

Here, dcdist is a configurable distance threshold.
Thus, two dominating character sets are consid-
ered similar if at least one character value is present
in their intersection and the corresponding relative
frequencies are within a configurable distance from
each other.

2. If the character distribution of the anomalous at-
tribute is close to the uniform distribution, the sim-
ilarity operator becomes a test for a nearly random
character distribution. This is implemented by cal-
culating the maximum distance between any pair
of frequency values from the sets Cobsv and Corig ,
and by testing whether this distance is less than a
configurable threshold d. Formally, ∀ 0 ≤ i, j ≤ m

ψcdist ≡ max (|fobsv,i − forig,j |) < dcdist

Note that these two different techniques are neces-
sary to accommodate common attacks (such as injection
of binary code and directory traversal attacks), which
manifest themselves as a character distribution anomaly
but with very different characteristics.

5.3. Structural Inference

The structural inference model uses the examples ob-
served in the training phase to construct a probabilistic
grammar that approximates the actual grammar for the
values of an application’s attribute.
If an attribute value observed during the detection

phase is determined to be anomalous by the model, the
generalization process extracts the prefix of the violat-
ing string up to and including the first character that vi-
olates the attribute’s grammar. The use of the offending
string’s prefix as a base for generalizing the attack is mo-
tivated by the observation that repeated attacks against
the same web application often exhibit similar prefixes
in the URLs or paths used as values in that attribute of
the application.
The prefix string is translated into a string of char-

acter classes. More precisely, all lowercase alphabetic
characters are mapped into “a,” all uppercase alphabetic
characters are mapped into “A,” all numeric characters
map to “0,” and all other characters remain unchanged.
Then, to test the similarity of a subsequent observed
value with respect to the translated anomalous string,

called sorig, a similar translation is performed on the ob-
served value, which becomes sobsv . The two normalized
values are then compared for equality. Formally, we in-
troduce the similarity operator ψstructure (sobsv, sorig)
such that ∀ 0 ≤ i ≤ m wherem = |sorig|,

ψstructure (sobsv, sorig) ≡ sobsv,i = sorig,i

For example, consider the value of the attribute
itemid in the last line of Figure 1. In this case,
the structural inference model detects a violation in the
structure of the attribute value because, during the train-
ing phase, the model learned that an item identifier is
composed of alphanumeric characters only. Therefore,
the generalization process creates an anomaly signature
based on the grammar [a|0]+;, because the charac-
ter “;” is the first character that violated the attribute
grammar derived during the training phase. Further at-
tempts to use the “;” character to perform an attack will
be classified as similar anomalies.

5.4. Token Finder

During the detection phase, the token finder tests an
observed attribute value lorig for membership in the set
T , whereT is the set of tokens recorded during the learn-
ing phase for that attribute (if the set of all values for that
attribute was determined to be an enumeration).
During the detection phase, if the token finder model

determines that an attribute value is anomalous, the set
of allowable values T for that attribute is extracted from
the model. Then, during the aggregation phase, a subse-
quent observed attribute value lobsv is detected as simi-
lar to the original anomalous value lorig , if the observed
value is not a member of the enumeration T and it is lex-
icographically similar to the original anomalous value.
Formally, given a function lex that determines lexi-

cographic similarity, we introduce the similarity opera-
tor ψtoken (lobsv) where

ψtoken ≡ lex(lorig, lobsv)

Note that the function lex can be tuned to achieve
different levels of sensitivity to variations in the values
of anomalous tokens. For instance, lex may use Ham-
ming or Levenshtein distances to determine string equal-
ity. Additionally, type inference may be performed on
the collection and an appropriate lex function selected.

In the degenerate case, lex always returns true and the
resulting anomaly signature would simply group anoma-
lies that represent attribute values not contained in the
original enumeration. In the current implementation,
however, lex is a simple string equality test.
For example, in the web application shown in Fig-

ure 1, the cc attribute always has values drawn from the
set of credit card types {mastercard, visa, amex}.
If an exploit uses an anomalous value for this attribute,
the corresponding anomaly signature will identify iden-
tical violations of the attribute value.

6. Attack Class Inference

Anomaly detection is able to detect unknown attacks
but it is not able to provide a concrete explanation of
what the attack represents with respect to the target ap-
plication. This is a general limitation of anomaly de-
tection approaches and often confuses system adminis-
trators when they have to analyze alerts that state only
that some attribute of a web request did not match one
or more of the previously established profiles. We ob-
served that certain well-known classes of attacks violate
anomaly models in a consistent way. Therefore, when-
ever such violations are detected, heuristics can be used
to attempt to infer the type of an attack and provide use-
ful hints to the system administrator.
Our system includes an attack class inference compo-

nent that utilizes ad hoc heuristics to determine the class
of an attack when certain types of anomalies are de-
tected. The selection of which heuristics to apply as well
as how each is applied is influenced by the type and pa-
rameters of the anomaly detected. Our system currently
incorporates heuristics for four major classes of web-
based attacks: directory traversals, cross-site scripting,
SQL injection, and buffer overflows.
As noted in Section 1, the attack class inference pro-

cess is different from the matching of “traditional” intru-
sion detection signatures (e.g., a Snort signature that de-
tects buffer overflow attacks). The reason is that the at-
tack class inference process is applied only to attributes
that have already been identified as anomalous, while
“traditional” signatures are applied to the entire event
being analyzed. As a consequence, the attack class in-
ference technique can bemore abstract (and less precise)
without incurring the risk of classifying benign portions
of an event as malicious. Note that the attack class in-

ference is performed in addition to (and independent of)
the derivation of a generalized anomaly signature, and
does not always produce a valid classification.
In the following, we describe how attack classes are

identified for the four classes of attacks currently sup-
ported.

6.1. Directory Traversal

Directory traversal attacks are essentially attempts to
gain unauthorized access to files that are not intended
to be accessed by a web application or web server by
traversing across the directory tree using .. and / es-
capes. These attacks are somewhat unique in that a
small set of characters is involved in their execution,
namely “.” and “/”. Accordingly, the heuristics for
detecting directory traversals are only activated if either
the character distribution returns a dominating charac-
ter set C where C ∩ {., /} �= ∅, or if the structural in-
ference model returns a violating character-compressed
string with a final underivable character of “.” or “/.”
To infer the presence of a directory traversal attack, the
heuristic scans the anomalous attribute value for a sub-
string derivable by the regular grammar represented by
(/|\.\.)+.
For example, suppose that the purchase web ap-

plication of Figure 1 is invoked with an itemid
value of “cat ../../../../../etc/shadow”.
In this case, the character distribution model identifies
an anomalous number of “.” and “/” characters, and,
in addition, the structural model detects a violation of
the attribute structure. As a consequence, the direc-
tory traversal attack class inference heuristics are ap-
plied to the anomalous attribute value. The heuristics
determine that the attribute matches the regular expres-
sion (/|\.\.)+, and the attack is identified as a direc-
tory traversal attack.
This information is added to the generalized sig-

nature associated with the anomalous event, and this
anomalous event, as well as further similar anomalous
events, are presented to the system administrator as a
group of anomalies labeled as directory traversal attacks.

6.2. Cross-site Scripting

Cross-site scripting attacks allow a malicious user
to execute arbitrary code on a client-side machine by

injecting malicious code, such as a JavaScript script,
into a web document (e.g., storing JavaScript code in
a database field) such that the code is unwittingly served
to other clients. These attacks generally consist of frag-
ments of client-side browser scripting languages. Be-
cause of the insertion of specific HTML tags and the use
of code-like content, this type of attack often results in a
violation of the structural inference, character distribu-
tion, and token finder models.
Consequently, the cross-site scripting heuristics are

applied to an anomalous attribute value if any of these
models are involved in the initial detection step. The
heuristics currently used for this class include a set of
scans for common syntactic elements of the JavaScript
language or HTML fragments (e.g., script or left or
right angle brackets used to delimit HTML tags).

6.3. SQL Injection

SQL injection attacks consist of unauthorized mod-
ifications to SQL queries, usually by escaping an input
to a query parameter that allows the attacker to execute
arbitrary SQL commands. Because of the insertion of
these escape characters, SQL injection attacks generally
result in the violation of the structure of an attribute.
Thus, the heuristics specific to SQL injection are

activated if the structural inference model detects an
anomaly. The heuristics themselves perform a set of
scans over the attribute value for common SQL lan-
guage keywords and syntactic elements (e.g., SELECT,
INSERT, UPDATE, DELETE, ’, or --).

6.4. Buffer Overflows

Buffer overflow attacks, which encompass attacks
such as stack smashing, heap smashing, data modifi-
cation, and others, typically involve sending a large
amount of data that overflows the allocated buffer, al-
lowing the attacker to overwrite return addresses, data or
function pointers, or otherwise overwrite sensitive vari-
ables with attacker-controlled data. Buffer overflow at-
tacks against web applications typically manifest them-
selves as attribute values that deviate dramatically from
established profiles of normalcy. Thus, the heuristics for
inferring the presence of a buffer overflow attack will
be activated if any of the character distribution, struc-
tural inference, or attribute length models report an at-

tribute as anomalous. The heuristics in the current sys-
tem perform a simple scan over the attribute string for
binary values (i.e., ASCII values greater than 0x80),
which are typical of basic buffer overflow attacks. More
sophisticated classification techniques could be substi-
tuted or used to supplement the basic heuristic, such as
abstract execution [20], with associated tradeoffs in per-
formance.

7. Evaluation

The systemwas evaluated in terms of its false positive
rate, its ability to correctly group and classify anomalies,
and its ability to perform detection on web request logs
in real-time. All experiments were conducted on a Pen-
tium IV 1.8 GHz machine with 1 GB of RDRAM.

7.1. False Positive Rate

In order to evaluate the false positive rate of the
anomaly detector, data sets from two universities, TU
Vienna and UCSB, were analyzed by the system. To
this end, a client was written to replay the requests to
a honeypot web server while a misuse detection system
sniffed a link between the client and server. All requests
corresponding to reported attacks were stripped from the
data set. Also, since many of the attacks were intended
for Microsoft IIS while the data sets were produced by
the Apache web server, many attacks were stripped out
simply by removing requests for documents that did not
exist.
The detection system itself was configured with an

initially empty anomaly signature set, and default learn-
ing, detection, and similarity thresholds were used. The
learning phase was performed over the first 1,000 ex-
amples of a specific web application attribute, at which
point the attached profile was switched into detection
mode. During detection mode, any alerts reported by
the system were flagged as false positives, due to the as-
sumption that the data set was attack-free. The results of
the experiment are shown in Table 1.
During analysis of the TU Vienna data set, the de-

tection system produced 14 alerts over 737,626 queries,
resulting in a quite low false positive rate. We believe
this attests to the ability of the anomaly detection mod-
els to accurately capture the “normal” behavior of at-
tribute values during the learning phase. The addition

of the anomaly generalization and aggregation compo-
nents, however, improved this even further by allow-
ing the system to collapse those 14 alerts into 2 groups.
When these groups were examined, we found that each
of the groups indeed comprised related alerts. For the
first, an IMAP mailbox was repeatedly accessed through
the imp webmail application, which had not been ob-
served during the learning phase. In response, the token
finder generated an alert, and the resulting anomaly sig-
nature allowed the system to group the alerts together in
a logical manner.1 For the second group, developers of
a custom web application passed invalid values to an at-
tribute during test invocations of their program. In this
case, the attribute length model detected an anomaly,
and the resulting anomaly signature correctly grouped
subsequent variations on the input errors with the first
instance.
The results of the generalization and aggregation

components during analysis of the UCSB data set were
even more dramatic. The detection system reported 513
alerts over 35,261 queries, resulting in a false positive
rate several orders of magnitude greater than the TU Vi-
enna data set. However, due to generalization and ag-
gregation, the 513 alerts were partitioned into 3 groups.
Manual inspection of the aggregated alerts demonstrated
that, as in the case of the TU Vienna data set, the groups
were again comprised of related alerts. The first group
was composed of a series of anomalous queries to the
whois.pl user lookup script, which expects a name
attribute with a valid username as the value. In this
case, the grouped alerts all possessed the name attribute
value teacher+assistant++advisor, possibly
as the result of a bad hyperlink reference to the script
from elsewhere on the department website. In this case,
the character distribution model detected an anomalous
number of “a” characters. The second group was iden-
tical in nature to the first group, except that the name ar-
gument value was dean+of+computer+science.
For this group, the character distribution detected an
anomalous number of “e” characters. The final group
was composed of several alerts on an optional argument
to the whois.pl script named showphone, which
takes either a yes or no value as an argument. In this
case, the alerts were attributed to an uppercase YES,

1Incidentally, this would be a reasonable case to put the associated
models back into the learning phase, in order to incorporate the char-
acteristics of the legitimate value into the attribute profile.

Table 1. False positive results.

Data set Queries False positives False Positive Rate Groups Grouped False Positive Rate

TU Vienna 737,626 14 1.90 × 10−5 2 3.00 × 10−6

UCSB 35,261 513 1.45 × 10−2 3 8.50 × 10−5

Table 2. Attack classification results.

Attack Detected? Variations Groups Alerting Models Characterization

csSearch Yes 10 1 Length, Char. Distribution Cross-site scripting
htmlscript Yes 10 1 Length, Structure Directory traversal
imp Yes 10 1 Length, Char. Distribution Cross-site scripting

phorum Yes 10 1 Length, Char. Distribution, Token Buffer overflow
phpnuke Yes 10 1 Length, Structure SQL injection
webwho Yes 10 1 Length None

which the token finder correctly detected as anomalous.

To evaluate the effectiveness of the attack inference
heuristics, a number of attacks comprising the different
attack classes that the system claims to detect, were in-
jected into the TU Vienna data set. This data set was
chosen because legitimate invocations of the vulnera-
ble applications were previously present in the access
log. Ten variations of each distinct attack were injected
throughout the data set, utilizing mutation techniques
from the Sploit framework [22]. The detection system
was configured with exactly the same parameters as in
the previous experiment. The results of the experiment
are shown in Table 2.

From the experimental results, we first note that all
instances of each attack were determined to be anoma-
lous by the anomaly detector. This is to be expected,
as the main focus of this work is on the effectiveness
of grouping and characterizing related anomalous alerts,
and not on improving the ability of the system to detect
raw anomalies. In each case, all instances of a given at-
tack were classified into one group. In addition, each
of the groups was correctly characterized as belonging
to the proper attack class. The only attack that was not
characterized by the attack inference heuristics was the
webwho attack. This, however, is correct behavior from
the system, as the webwho attack exploited an input val-

idation error for which the system includes no charac-
terization heuristics. It is important to note, however,
that the anomaly was still detected, and further varia-
tions were grouped correctly. Indeed, although a variety
of models provided the initial decision that the request
was anomalous, in each case the anomaly signature gen-
eration procedure was able to match subsequent varia-
tions of the same attack. We believe that this demon-
strates the power our anomaly generalization technique,
specifically with respect to its ability to group similar
anomalies.

7.2. Performance

The performance of the detection system was evalu-
ated in terms of both elapsed processing time and mem-
ory usage when run on both attack-free data sets from
TU Vienna and UCSB. Both metrics are important for
the real-world applicability of this system, since in the
ideal case it would be run in real-time on hardware avail-
able to most web site operators. The same parameters
used for the false positive evaluation were used for this
experiment. Ten runs were performed for each data set,
and the elapsed times were averaged. The results of the
time required for analysis by the system are displayed in
Table 3.
For both data sets, the detection system was able to

Table 3. Detection performance results (time).

Data set Requests Request Rate Elapsed Analysis Time Analysis Rate

TU Vienna 737,626 0.107095 req/sec 934 sec 788.06 req/sec
UCSB 35,261 0.001360 req/sec 64 sec 550.95 req/sec

maintain a processing rate orders of magnitude above
the rate of client requests logged by the web server.
For instance, in the case of the TU Vienna data set,
the request analysis was performed approximately 7,000
times as quickly as actual requests were being logged.
From this, we conclude that for many sites, the detection
system is capable of performing its analysis in real-time.
In addition to CPU usage, an analysis of the memory

utilization of the system was performed. The results of
this evaluation showed that the system did not require
substantial memory resources once the profiles were es-
tablished. The details of the memory usage evaluation
are not provided for the sake of space.

8. Conclusions and Future Work

This paper presented an approach that addresses the
limitations of anomaly-based intrusion detection sys-
tems by using both generalization and characterization
techniques. Generalization is used to create a more
abstract description of an anomaly that enables one to
group similar attacks. Characterization is used to in-
fer the class of attack that is associated with a group of
anomalies. Using these two techniques, it is possible to
reduce the time required by an administrator to make de-
cisions about the nature of the anomalies (actual attacks
versus false positives) and their criticality. Furthermore,
the generalization and characterization presented can as-
sist application developers in pinpointing the location
and nature of previously unknown vulnerabilities.
One possible drawback of the architecture occurs if

an attack that has been successfully detected is grouped
with attacks that will be considered false positives. If the
group of attacks is dropped by the system administrator,
then the real attack is not identified as such and becomes
a false negative.
We developed a system that implements anomaly sig-

nature generation and attack class inference, and we

tested it on real-world data collected at two universities.
The results shows that the proposed techniques are able
to correctly generalize and characterize attacks, consid-
erably reducing the effort needed to analyze the output
of the intrusion detection system.
The promising results of our initial experiments sug-

gest that the generalization and characterization tech-
niques can be extended to other domains, such as the
arguments of system calls issued by critical applications.
Future research will explore these new domains and the
general applicability of our techniques.
We will also investigate whether the attack inference

technique can be improved, either by using more so-
phisticated heuristics or by relying on different decision
models. For example, we plan to explore whether attack
characterization can be expressed as a Bayesian network
where the model outputs are used as evidence nodes.
Finally, we also plan to investigate whether evalua-

tion of the system using alternative metrics increases the
precision of our characterization of the system’s effec-
tiveness in reducing the effective false positive rate.

Acknowledgments

This research was supported by the Army Research
Office, under agreement DAAD19-01-1-0484, and by
the National Science Foundation, under grants CCR-
0238492 and CCR-0524853.

References

[1] M. Almgren, H. Debar, and M. Dacier. A Lightweight
Tool for Detecting Web Server Attacks. In Proceedings
of the ISOC Symposium on Network and Distributed Sys-
tems Security, San Diego, CA, February 2000.

[2] M. Almgren and U. Lindqvist. Application-Integrated
Data Collection for Security Monitoring. In Proceed-

ings of Recent Advances in Intrusion Detection (RAID),
LNCS, pages 22–36, Davis, CA, October 2001. Springer.

[3] C. Warrender and S. Forrest and B.A. Pearlmutter. De-
tecting Intrusions using System Calls: Alternative Data
Models. In IEEE Symposium on Security and Privacy,
pages 133–145, 1999.

[4] K. Coar and D. Robinson. TheWWWCommon Gateway
Interface, Version 1.1. Internet Draft, June 1999.

[5] Common Vulnerabilities and Exposures. http://
www.cve.mitre.org/, 2005.

[6] D.E. Denning. An Intrusion Detection Model. IEEE
Transactions on Software Engineering, 13(2):222–232,
February 1987.

[7] S. Forrest. A Sense of Self for UNIX Processes. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, pages 120–128, Oakland, CA, May 1996.

[8] A.K. Ghosh, J. Wanken, and F. Charron. Detecting
Anomalous and Unknown Intrusions Against Programs.
In Proceedings of the Annual Computer Security Appli-
cation Conference (ACSAC’98), pages 259–267, Scotts-
dale, AZ, December 1998.

[9] C. Ko, M. Ruschitzka, and K. Levitt. Execution Moni-
toring of Security-Critical Programs in Distributed Sys-
tems: A Specification-based Approach. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy,
pages 175–187, Oakland, CA, May 1997.

[10] C. Kruegel, T. Toth, and E. Kirda. Service Specific
Anomaly Detection for Network Intrusion Detection. In
Symposium on Applied Computing (SAC). ACM Scien-
tific Press, March 2002.

[11] C. Kruegel and G. Vigna. Anomaly Detection of Web-
based Attacks. In Proceedings of the 10th ACM Con-
ference on Computer and Communication Security (CCS
’03), pages 251–261, Washington, DC, October 2003.
ACM Press.

[12] W. Lee, S. Stolfo, and P. Chan. Learning Patterns from
Unix Process Execution Traces for Intrusion Detection.
In Proceedings of the AAAI Workshop: AI Approaches to
Fraud Detection and Risk Management, July 1997.

[13] M. Mahoney and P. Chan. Learning Nonstationary Mod-
els of Normal Network Traffic for Detecting Novel At-
tacks. In Proceedings of the 8th International Confer-
ence on Knowledge Discovery and Data Mining, pages
376–385, 2002.

[14] V. Paxson. Bro: A System for Detecting Network In-
truders in Real-Time. In Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, January 1998.

[15] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion Detection
with Unlabeled Data Using Clustering. In Proceedings of
ACMCSS Workshop on Data Mining Applied to Security,
Philadelphia, PA, November 2001.

[16] M. Roesch. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the USENIX LISA ’99 Con-
ference, Seattle, WA, November 1999.

[17] A. Stolcke and S. Omohundro. Inducing Probabilistic
Grammars by Bayesian Model Merging. In Conference
on Grammatical Inference, 1994.

[18] K.M.C. Tan, K.S. Killourhy, and R.A. Maxion. Under-
mining an Anomaly-Based Intrusion Detection System
Using Common Exploits. In Proceedings of the 5th In-
ternational Symposium on Recent Advances in Intrusion
Detection, pages 54–73, Zurich, Switzerland, October
2002.

[19] E. Tombini, H. Debar, L. Me, and M. Ducasse. A Se-
rial Combination of Anomaly and Misuse IDSes Applied
to HTTP Traffic. In Proceedings of the Twentieth An-
nual Computer Security Applications Conference, Tuc-
son, Arizona, December 2004.

[20] Thomas Toth and Christopher Kruegel. Accurate Buffer
Overflow Detection via Abstract Payload Execution. In
5th Symposium on Recent Advances in Intrusion Detec-
tion (RAID), 2002.

[21] G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer.
A Stateful Intrusion Detection System for World-Wide
Web Servers. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC 2003), pages
34–43, Las Vegas, NV, December 2003.

[22] Giovanni Vigna, William Robertson, and Davide
Balzarotti. Testing Network-based Intrusion Detection
Signatures Using Mutant Exploits. In 11th ACM Confer-
ence on Computer and Communications Security (CCS),
2004.

[23] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. In Proceedings of the 9th

ACM Conference on Computer and Communications Se-
curity, pages 255–264, Washington DC, USA, November
2002.

