Pixy: A Static Analysis Tool for Detecting Web Application Vulner abilities
(Short Paper)

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda
Technical University of Vienna
Secure Systems Lab
{enji,chris,eR @seclab.tuwien.ac.at

Abstract resulting damages are increasing. The main reasons for this
phenomenon are time and financial constraints, limited pro-
The number and the importance of Web applications gramming skills, or lack of security awareness on part of
have increased rapidly over the last years. At the same time,the developers.
the quantity and impact of security vulnerabilities in such ~ The existing approaches for mitigating threats to Web
applications have grown as well. Since manual code re- applications can be divided into client-side and servee-si
views are time-consuming, error-prone and costly, the needsolutions. The only client-side tool known to the authors
for automated solutions has become evident. is Noxes [14], an application-level firewall offering prote
In this paper, we address the problem of vulnerable tion in case of suspectamtoss-site scriptindXSS) attacks
Web applications by means of static source code analysisthat attempt to steal a user’s credentials. Server-side sol
More precisely, we use flow-sensitive, interprocedural and tions have the advantage of being able to discover a larger
context-sensitive data flow analysis to discover vulnerabl range of vulnerabilities, and the benefit of a security flaw
points in a program. In addition, alias and literal analysis fixed by the service provider is instantly propagated to all
are employed to improve the correctness and precision ofits clients. These server-side techniques can be furthst cl
the results. The presented concepts are targeted at the gensified into dynamic and static approaches. Dynamic tools
eral class of taint-style vulnerabilities and can be apglie (e.g., [9, 18, 21], and Perl’s taint mode try to detect atsack
the detection of vulnerability types such as SQL injection, while executing the audited program, whereas static analyz
cross-site scripting, or command injection. ers ([10, 11, 15, 16]) scan the Web application’s source code
Pixy, the open source prototype implementation of our for vulnerabilities.
concepts, is targeted at detecting cross-site scriptinig vu In this paper, we present Pixy, the first open source tool
nerabilities in PHP scripts. Using our tool, we discovered for statically detecting XSS vulnerabilities in PHP 4 [20]
and reported 15 previously unknown vulnerabilities in thre code by means of data flow analysis. We chose PHP as
web applications, and reconstructed 36 known vulnerabil- target language since it is widely used for designing Web
ities in three other web applications. The observed false applications [23], and a substantial number of security ad-
positive rate is at around 50% (i.e., one false positive for visories refer to PHP programs [3]. Although our prototype
each vulnerability) and therefore, low enough to permit ef- is aimed at the detection of XSS flaws, it can be equally
fective security audits. applied to othetaint-stylevulnerabilities such as SQL in-
jection or command injection (see Section 2). The main
contributions of this paper are as follows:
1. Introduction e A flow-sensitive, interprocedural, and context-
sensitive data flow analysis for PHP, targeted at

Web applications have become one of the most impor- detecting taint-style vulnerabilities. This analysis
tant communication channels between various kinds of ser- process had to overcome significant conceptual
vice providers and clients. Along with the increased impor- challenges due to the untyped nature of PHP.
tance of Web applications, the negative impact of security
flaws in such applications has grown as well. Vulnerabili- e Additional literal analysis and alias analysis steps that
ties that may lead to the compromise of sensitive informa- lead to more comprehensive and precise results than

tion are being reported continuously, and the costs of the those provided by previous approaches.

e Pixy, a system that implements our proposed analysischaracteristics, and adjusting Pixy to the detection oéoth
technique, written in Java and licensed under the GPL. instances only requires some engineering effort.

e Experimental validation of Pixy’s ability to detect un- .
known vulnerabilities with a low false positive rate. 3. Data Flow Analysis

. Hag The goal of our analysis is to determine whether it is
2. Taint-Style Vulner abilities possible that tainted data reaches sensitive sinks witheut

, . . ing properly sanitized. For this, we apply the technique of
The presented work is targeted at the detection of taint- 55 fiow analysis, which is a well-understood topic in com-

style vulnerabilities. Tainteddata denotes data that origi- puter science and has been used in compiler optimizations

nates from possibly malicious users and that can possibly;,. qacades ([, 17, 19]). In a general sense, the purpose
cause security problems at vulnerable points in the program

" ; _ of data flow analysis is to statically compute certain infor-
(calledsensitive sinKs Tainted data may enter the program 4o for every single program point (or for coarser units

at specific places, and can spread across the program via ag,ch as functions). For instance, the classioalstant anal-
signments and similar constructs. Using a set of suitable op ysis computes, for each program point, the literal values
erations, tainted data can betainted(sanitized, removing that variables may hold.

its harmful properties. Many important types of vulnerabil Data flow analysis operates on the control flow graph
ities (e.g., cross-site scripting or SQL injection) can eers (CFG) of a program. Hence, we first construct a parse

as instances ,Of this general classta_{iﬁ_t-style _vuIngrabiIi- tree of the PHP input file using the Java lexical analyzer

ties An overview of these vulnerabilities is given in [15]. JFlex [12] and the Java parser Cup [5]. The parse tree is

then transformed into a linearized form resembling three-
address code [1], and kept as a control flow graph for each
encountered function.

One of the main purposes of XSS attacks is to steal A straightforward approach to solving the problem of de-
the credentials (e.g., the cookie) of an authenticated usefkecting taint-style vulnerabilities would be to immedigte

by means of malicious JavaScript code. Due toshrd- conduct ataint analysison the intermediate three-address

box model JavaScript has access only to cookies that be-code representation generated by the front-end. This taint

|0ng to the site from which the JavaSCript Originated. XSS ana'ysis would |dent|fy points where tainted data can en-
attacks circumvent the sandbox model by injecting mali- ter the program, propagate taint values along assignments
cious JavaScript into the output of vulnerable application and similar constructs, and inform the user of every sen-
that have access to the desired cookies. More details onitive sink that receives tainted input. However, to enable
this attack can be found in [4]. When speaking in terms of the analysis to produce correct and precise results, signifi
the sketched class of taint'style Vulnel’abilities, XSS loan cant preparatory work is required_ For instance, whenever
roughly described by the following properties: a variable is assigned a tainted value, this taint value must

)) not be propagated only to the variable itself, but also to all

e Entry Points into the program: GET, POST and . jjiases (variables pointing to the same memory loction
COOKIE arrays. Hence, we also perform alias analysisfor providing in-

e Sanitation Routines: htmlentities(), htmispe- formation e_lb_out alias relgtionships_,. Moreover, it would t_)e
cialchars(), and type casts that destroy potentially V€Y beneficial for the taint analysis to know about the lit-
malicious characters or transform them into harmless €ral values that variables and constants may hold at each
ones (such as casts to integer). program point. This task is performed hiteral analysis

Currently, we use the information collected by literal gral
e Sensitive Sinks: All routines that return data to the sis to evaluate branch conditions and ignore program paths

2.1. Cross-Site Scripting (XSS)

browser, such as echo(), print() and printf(). that cannot be executed at runtime (a technique calhl
pruning). Other potential uses of literals information would
2.2. Other Vulnerabilities be the resolution of non-literal include statements, \@eia

variables, variable array indices, and variable functalisc
Although our current prototype focuses on XSS vulner- ~ One of the key features of our analysis is its high preci-
abilities, other vulnerabilities such as SQL injection and sion, since it is flow-sensitive, interprocedural, and eatt
command injection have been identified as belonging to thesensitive. Moreover, we are the first to perform alias analy-
ggneral class of taint-style vulnerabilities and diffetyon INote that we use the name “literal analysis” instead of thssital
with respect to the concrete values of af§W parameters. Th&erm “constant analysis” in order to prevent confusion vRtHP's con-
presented concepts are targeted at their underlying generastants.

sis for an untyped, reference-based scripting languade suc on a straightforward extension that automatically inliimes

as PHP. Although there exists a rich literature on C pointer cluded files, which would eliminate this manual task. Each
analysis, it is questionable whether these techniques carfile was analyzed in less than a minute using a 3.0 GHz Pen-
be directly applied to the semantically different problem tium 4 processor with 1GB RAM, even though our proto-
of alias analysis for PHP references. As mentioned in antype still presents many opportunities for performance tun
unpublished paper by Xie and Aiken [25], static analysis ing.

of scripting languages is regarded as a difficult problem Tables 1 and 2 summarize the results of our experiments.
and has not achieved much attention so far. In this con-In three applications, we reconstructed 36 known vulnera-
text, even apparently trivial issues such as the simulatfon bilities with 27 false positives (FP’s). In three other dpat

the effects of a simple assignment require careful consid-tions, we discovered 15 previously unknown vulnerabiitie
erations. For instance, multi-dimensional arrays can con-with 16 false positives. In these cases, we informed the
tain elements that are neither explicitly addressed nor de-authors about the issues and posted security advisories to
clared. To correctly handle the assignment of such a multi-the BugTraq mailing list [3]. Pixy also reported a few pro-
dimensional array to another array variable, these hiddengramming bugs not relevant for security, such as function
elements must be taken into account. More details on thesecalls with too many arguments. Note that since these bugs
and other aspects of the applied analyses can be found ithave no influence on a program’s security properties, they

our full-length technical report [13]. were counted neither as vulnerabilities nor as false posi-
tives. These results clearly show that our analysis is dapab
3.1. Limitations of finding novel vulnerabilities in real-world applicatien

Currently, Pixy does not support object-oriented features 4-1- Case Studies
of PHP. Each use of object member variables and methods
is treated in an optimistic way, meaning that malicious data Detailed descriptions of the discovered vulnerabilities
can never arise from such constructs. In addition, files in- can be found in the corresponding BugTraq postings. In
cluded with “include” and similar keywords are not scanned this section, we will take a closer look at two interesting
automatically. In our experiments, we frequently observed vulnerabilities that demonstrate the requirement to perfo
false positives stemming from these lacking file inclusjons an analysis that is able to track data flows throughout the
which we eliminated through manual inclusion. Unfortu- program.
nately, automation of this manual procedure is not straight ~ The Reviews Module of PhpNuke contains an interesting
forward because file inclusions in PHP are dynamic, in con- flaw related to the use of a superficially harmless-looking
trast to the static preprocessor includes in C. This meats th built-in function. Our analyzer makes sure that all built-i
the names of the files to be included can be constructed afunctions are considered to return tainted values by defaul
run-time, recursive and conditional inclusions are permit This way, no vulnerabilities can be missed due to built-in
ted, and included files can even return values. In this sensefunctions that have not been modeled explicitly to return un
the inclusion mechanism of PHP strongly resembles thattainted values. Explicit modeling is performed by proviglin
of function calls, with a number of differences concerning a short specification in a configuration file that is processed
variable scoping. at start-up. A list of currently modeled built-in functions
can be found in our technical report [13]. False positives
arising from harmless but unmodeled functions can easily
be eliminated by providing a specification of the function’s
true behavior. In Figure 1, a simplified version of the vul-

We performed a series of experiments with our proto- nerable code shows that the second parameter of function
type implementation to demonstrate its ability to deteetpr postcomment is echoed on Line 3. Originally, this warning
viously known cross-site scripting vulnerabilities, asliwe was issued because the function urldecode was unmodeled,
as new ones. To this end, Pixy was run on six popular, and hence, returned a tainted value. However, a look into
open source PHP programs. The program files on whichthe PHP manual revealed that urldecode has to be handled
Pixy was evaluated and our prototype itself can be obtainedwith care, since it is able to transform benign character se-
from our website [13]. Since Pixy does not automatically gquences into dangerous ones, such as transforming %3c into
continue its analysis into included files yet, we manually <. This is why even explicit sanitization prior to the call of
resolved include relationships for the scanned files. More function postcomment fails, which was reported in BugTraq
precisely, we simply provided missing function definitions posting 10493.
and static definitions of global variables, which took less Figure 2 shows a simplified version of the file pre-
than an hour for each application. We are currently working view_staticcgi.php in Simple PHP Blog. The sensitive sink

4. Empirical Results

1 function postcomment ($id, $title) { Since our alias analysis does not cover aliasing relation-
2: $title = urldecode($title); . .
3 echo $title: ships for arrays and array elements, a global array and its
4: } content cannot be untainted by statements that are located
inside functions. In seven cases, a global array element is
Figure 1. PhpNuke vulnerability (simplified). untainted inside a sanitization function, followed by at-ou
put statement that contains the (incorrectly tainted) allob
0f (L..) | i i i it it i
2: $entry = $_GET['entry’]; An interesting k_lnd of false positive with six warnings
3: $tenp_file_name = $entry; arose while scanning PhpNuke. In the YourAccount mod-
4: } else { ule, values originating from the user are embedded into the
5: $temp_file_name = i
stri psl ashes($_POST[' file_name']): output as attributes of I—!'I_'ML tags. AIthqugh these vglu_es
6} were not thoroughly sanitized prior to their use, the enggti
7: echo($tenp_file_nane); sanitization is sufficient because it makes sure that they do
not contain double quotes. But since the attribute fields are
Figure 2. Simple PHP Blog vulnerability (sim- delimited by double quotes, the attacker’s inputis “trafipe
plified). inside these attributes where it is not able to do any harm.

Custom sanitization using regular expressions is a dan-
gerous practice. It is easy to miss dangerous characters,
especially when the cases get more complex and when the
implementor lacks the necessary expertise. Thereforg, Pix
does not consider the use of such methods as sanitization.
In two cases, values that have undergone such a custom san-
itization were reported as tainted. Manual inspection,-how
ever, did not reveal any ways for circumventing the protec-

on Line 7 receives the variable $tedfife_name, which is
initialized with a tainted value obothprogram paths of the
“if"-construct on Line 1. If the guarding condition is true,
the variable is initialized with $entry (on Line 3), which sva
assigned a tainted value from the GET array before (Line
2). Inside the second branch, $tefilp_name is tainted by tion

a POST variable indirectly over a call to the built-in func- N ..
The remaining five false positives were due to more or

tion stripslashes. This function returns the taint value of ess complex “if"-constructs that are responsible for un-
its parameter and has been modeled to do so. Note that o plex . P - ;
ainting a critical variable. Under certain conditions, it

Pixy would also have correctly detected a vulnerability if . .
$tempfile_name were assigned an untainted value on justm|ght be possible that none of the branches of the construct
one of the_two branches is taken, leaving the variable tainted. However, we did not

find a way to induce such a bypassing condition.

4.2. False Positives
5. Related Work

Among the 47 false positives that Pixy reported, 14 were
caused by global variables that are initialized dynamycall Currently, there exist only few approaches that deal with
(e.g., through a database read) inside an included file. Asstatic detection of web application vulnerabilities. Hgan
mentioned previously, we only considered static initaliz et al. [10] were the first to address this issue in the context
tions during the manual preprocessing step. Since uriitia of PHP applications. They used a lattice-based analysis al-
ized globals are conservatively treated as tainted, wgsnin gorithm derived from type systems and typestate, and com-
were issued at the program points where these variables arpared it to a technique based on bounded model checking
sent back to the user. We are confident, however, that thesén their follow-up paper [11]. A substantial fraction of PHP
false positives will be eliminated when include files are au- files (8% in their experiments) is rejected due to problems
tomatically processed as well. with the applied parser. In contrast, we are able to parse the

The second largest group of false positives contains 13full PHP language. Moreover, Huang et al.’s work leaves
warnings that can be traced back to file reads. In our anal-out important issues such as the handling of references, ar-
ysis, we conservatively regarded values originating from ray elements, or any of the limitations that we addressed in
files as being tainted. In these 13 cases, it turned out thatSection 3.1. Unfortunately, comparing their results tosour
an attacker is actually not able to inject malicious content was not possible due to the limited detail of their reports (n
into the files that were read. However, our conservative version numbers or advisory ID’s are given). After request-
approach led to the detection of two previously unknown ing a copy of their tool, the authors informed us of their
vulnerabilities. The ratio between false positives and vul plans to commercialize it, which prevents them to share it
nerabilities for this problem could be improved by tracking with other researchers.
the files into which an attacker may be able to inject tainted A recent, unpublished paper by Xie and Aiken [25] ad-
values. dresses the problem of statically detecting SQL injection

Program File LOC | Variables | Vulnerabilities | FP's | Advisories
PhpNuke 6.9 Reviews Module 8409 3113 15 5 | BugTraq: 10493,
10524, 365368
YourAccount Module| 9070 3452 9 25 | BugTraq: 13007,
394971, 394867
321324
PhpMyAdmin 2.6.0-pl2 | selectserver.lib.php 89 23 9 0 | PMASA-2005-01
Gallery 1.3.3 search.php 1810 530 2 1 | BugTraq: 348514
login.php 1719 488 1 0 | BugTraq: 8039
Totals | 21097 7606 36 31
Table 1. Known vulnerabilities discovered by Pixy.
Program File LOC | Variables | Vulnerabilities | FP's | Advisories
Simple PHP Blog 0.4.5 previewcgi.php 6938 2342 3 5 | TUVSA-0511-001,
previewstaticcgi.php| 6883 2316 4 4 | BugTraq 415463
colors.php 6971 2313 1 6
Serendipity 0.8.4 personal.inc.php 6588 2305 2 1| TUVSA-0509-001,
BugTrag 412023
Yapig 0.95b view.php 5128 1302 5 0 | TUVSA-0510-001,
BugTraqg 413255
Totals | 29508 10578 15 16

Table 2. Unknown vulnerabilities discovered by Pixy.

vulnerabilities in PHP scripts. By applying a custom, three presented tool currently supports only “basic features” of
tier architecture instead of using full-fledged data-flomlan ~ PHP, excluding references.

ysis techniques, they operate on a less ambitious condeptua Engler et al. have published various static analysis ap-
level than we do. For instance, recursive function calls are proaches to finding vulnerabilities and programming bugs
simply ignored instead of being handled correctly. More- in the context of C programs. For example, in [6], the
over, alias analysis is not performed at all, which further authors describe a system that translates simple rules into
lowers the correctness of their approach. Multi-dimension automata-based compiler extensions that check whether a
arrays also appear to be unsupported. They apply a heuristiprogram adheres to these rules or not. An extension to this
for resolving simple cases of include statements that seemsvork is given in [7], where the authors present techniques
to yield good results in practice. It should be easy to incor- for the automatic extraction of such rules from a given pro-
porate this approach into our prototype. gram. In [2], tainting analysis is used to identify vulnetab

N) _ ities in operating system code where user supplied integer
Livshits and Lam [15] applied an analysis supported by and pointer values are used without proper checking.

binary decision diagrams presented in [24] for finding se- An alternative approach aiming at the detection of taint-

curity vulnerabilities in Java applications. Their worK-di style vulnerabilities introduces special type qualifiershte

fers from ours in the underlying analysis, which is flow- analyzed programming language. One of the most promi-
insensitive for the most part, and the target language Javap .nt'tools that applies this concept is CQual [8], which has
which is a typed language. This considerably eases the Chalbeen, among other things, used by Shankar e’t al. [22] to

lenges faced by static analysis. detect format string vulnerabilities in C code. However, it

In [16], a technique for approximating the string output remains questionable whether this technique can be applied
of PHP programs with a context-free grammar is presented.t0 untyped scripting languages.
While primarily targeted at the validation of HTML output,
the author claims that it can also be used for the detection6. Conclusions
of cross-site scripting vulnerabilities. However, withaay
taint information or additional checks, it appears to be dif Web applications have become a popular and wide-
ficult to distinguish between malicious and benign output. spread interaction medium in our daily lives. At the same
Only one discovered XSS vulnerability is reported, and the time, vulnerabilities that endanger the personal data@fus
observed false positive rate is not mentioned. Moreover, th are discovered regularly. Manual security audits targated

these vulnerabilities are labor-intensive, costly, andrer
prone. Therefore, we propose a static analysis technique
thatis able to detect taint-style vulnerabilities autonedly.

This broad class includes many types of common vulnera-
bilities such as SQL injection or cross-site scripting. Our
analysis is based on data flow analysis, a well-understood
and established technique in computer science. To improve
the correctness and precision of our taint analysis, we con- [g]
ducted a supplementary alias analysis as well as literdd ana
ysis. All our analyses are interprocedural, context-g&esi
and flow-sensitive for providing a high degree of precision
and keeping the number of false positives low, making our [10]
tool useful for real-world applications.

We implemented our concepts in Pixy, an open-source
Java tool able to detect cross-site scripting flaws in PHP [11]
scripts. In the course of our experimental validation, we
discovered and reported 15 previously unknown vulnerabil-
ities and reconstructed 36 known vulnerabilities, while ob
serving a moderate false positive rate of around 50% (i.e.,
one false positive for each vulnerability on average).

There is an urgent need for automated vulnerability de-
tection in Web application development, especially beeaus
Web applications are growing into large and complex sys-
tems. We believe that our presented concepts provide an
effective solution to this problem, therefore offering ben
fits to both users and providers of Web applications.

7. Acknowledgments

This work has been supported by the Austrian Science
Foundation (FWF) under grant P18368-N04. We would [17]
like to thank our shepherd for his guidance in preparing the
camera-ready version of the paper, and Markus Schordan{tél
for insightful discussions on the theory of data flow analy-
sis and abstract interpretation.

References

(1]

(2]

(3]
(4]

(5]
(6]

A. V. Aho, R. Sethi, and J. D. UllmanCompilers: princi-
ples, techniques, and tool8ddison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1986.

K. Ashcraft and D. Engler. Using programmer-written com
piler extensions to catch security holesIHEE Symposium

on Security and Privagy2002.

BugTrag. BugTraq Mailing List Archive.
http://www.securityfocus.com/archive/1, 2005.

CERT. CERT Advisory CA-2000-02: Malicious

HTML Tags Embedded in Client Web Requests.
http://www.cert.org/advisories/CA-2000-02.html, 2005
CUP. CUP: LALR Parser Generator in Java.
http://www2.cs.tum.edu/projects/cup/, 2005.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. ©®SDI 2000 2000.

(7]

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring er
rors in systems code. BOSP '01: Proceedings of the 18th
ACM Symposium on Operating Systems Princi#2691.

] J. S. Foster, M. Faehndrich, and A. Aiken. A theory of type

[12]

[13]

[14]

[15]

[16]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

qualifiers. InPLDI '99: Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and
Implementation1999.

Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web
application security assessment by fault injection andieh
ior monitoring. INWWW '03: Proceedings of the 12th In-
ternational Conference on World Wide W&003.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo. Securing web application code by static analysis
and runtime protection. IRVWW '04: Proceedings of the
13th International Conference on World Wide \V2B04.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and
S.-Y. Kuo. Verifying web applications using bounded model
checking. INDSN 2004.

JFlex. JFlex: The Fast Scanner Generator for Java.
http://jflex.de, 2005.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting XSS vulnerabilities.
http://www.seclab.tuwien.ac.at/projects/pixy/, 2006.

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:
A client-side solution for mitigating cross-site scrifgiat-
tacks. InThe 21st ACM Symposium on Applied Computing
(SAC 2006)

V. B. Livshits and M. S. Lam. Finding security errors in
Java programs with static analysis. Pmoceedings of the
14th Usenix Security SymposiuAug. 2005.

Y. Minamide. Static approximation of dynamically gene
ated web pages. WWW ’'05: Proceedings of the 14th In-
ternational Conference on World Wide W&005.

S. S. Muchnick Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirleyd a
D. Evans. Automatically hardening web applications using
precise tainting. InFIP Security 20052005.

F. Nielson, H. R. Nielson, and C. HankiRrinciples of Pro-
gram Analysis Springer-Verlag New York, Inc., 1999.

PHP. PHP: Hypertext Preprocessor. http://www.phip.ne
2005.

T. Pietraszek and C. V. Berghe. Defending against injec
tion attacks through context-sensitive string evaluatitm
Recent Advances in Intrusion Detection 2005 (RAIDP5.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers

Proceedings of the 10th USENIX Security Symposi0®1.
Stephen Shankland. Andreessen: PHP succeeding where
Java isn't. http://www.zdnet.com.au, 2005.

J. Whaley and M. S. Lam. Cloning-based context-serssiti
pointer alias analysis using binary decision diagrams. In
PLDI '04: Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implemen-
tation, 2004.

Y. Xie and A. Aiken. Static Detection of Se-
curity Vulnerabilities in Scripting Languages.
http://glide.stanford.edu/yichen/research/sec.p8620

