
Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper)

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda
Technical University of Vienna

Secure Systems Lab
{enji,chris,ek}@seclab.tuwien.ac.at

Abstract

The number and the importance of Web applications
have increased rapidly over the last years. At the same time,
the quantity and impact of security vulnerabilities in such
applications have grown as well. Since manual code re-
views are time-consuming, error-prone and costly, the need
for automated solutions has become evident.

In this paper, we address the problem of vulnerable
Web applications by means of static source code analysis.
More precisely, we use flow-sensitive, interprocedural and
context-sensitive data flow analysis to discover vulnerable
points in a program. In addition, alias and literal analysis
are employed to improve the correctness and precision of
the results. The presented concepts are targeted at the gen-
eral class of taint-style vulnerabilities and can be applied to
the detection of vulnerability types such as SQL injection,
cross-site scripting, or command injection.

Pixy, the open source prototype implementation of our
concepts, is targeted at detecting cross-site scripting vul-
nerabilities in PHP scripts. Using our tool, we discovered
and reported 15 previously unknown vulnerabilities in three
web applications, and reconstructed 36 known vulnerabil-
ities in three other web applications. The observed false
positive rate is at around 50% (i.e., one false positive for
each vulnerability) and therefore, low enough to permit ef-
fective security audits.

1. Introduction

Web applications have become one of the most impor-
tant communication channels between various kinds of ser-
vice providers and clients. Along with the increased impor-
tance of Web applications, the negative impact of security
flaws in such applications has grown as well. Vulnerabili-
ties that may lead to the compromise of sensitive informa-
tion are being reported continuously, and the costs of the

resulting damages are increasing. The main reasons for this
phenomenon are time and financial constraints, limited pro-
gramming skills, or lack of security awareness on part of
the developers.

The existing approaches for mitigating threats to Web
applications can be divided into client-side and server-side
solutions. The only client-side tool known to the authors
is Noxes [14], an application-level firewall offering protec-
tion in case of suspectedcross-site scripting(XSS) attacks
that attempt to steal a user’s credentials. Server-side solu-
tions have the advantage of being able to discover a larger
range of vulnerabilities, and the benefit of a security flaw
fixed by the service provider is instantly propagated to all
its clients. These server-side techniques can be further clas-
sified into dynamic and static approaches. Dynamic tools
(e.g., [9, 18, 21], and Perl’s taint mode try to detect attacks
while executing the audited program, whereas static analyz-
ers ([10, 11, 15, 16]) scan the Web application’s source code
for vulnerabilities.

In this paper, we present Pixy, the first open source tool
for statically detecting XSS vulnerabilities in PHP 4 [20]
code by means of data flow analysis. We chose PHP as
target language since it is widely used for designing Web
applications [23], and a substantial number of security ad-
visories refer to PHP programs [3]. Although our prototype
is aimed at the detection of XSS flaws, it can be equally
applied to othertaint-stylevulnerabilities such as SQL in-
jection or command injection (see Section 2). The main
contributions of this paper are as follows:

• A flow-sensitive, interprocedural, and context-
sensitive data flow analysis for PHP, targeted at
detecting taint-style vulnerabilities. This analysis
process had to overcome significant conceptual
challenges due to the untyped nature of PHP.

• Additional literal analysis and alias analysis steps that
lead to more comprehensive and precise results than
those provided by previous approaches.

• Pixy, a system that implements our proposed analysis
technique, written in Java and licensed under the GPL.

• Experimental validation of Pixy’s ability to detect un-
known vulnerabilities with a low false positive rate.

2. Taint-Style Vulnerabilities

The presented work is targeted at the detection of taint-
style vulnerabilities.Tainteddata denotes data that origi-
nates from possibly malicious users and that can possibly
cause security problems at vulnerable points in the program
(calledsensitive sinks). Tainted data may enter the program
at specific places, and can spread across the program via as-
signments and similar constructs. Using a set of suitable op-
erations, tainted data can beuntainted(sanitized), removing
its harmful properties. Many important types of vulnerabil-
ities (e.g., cross-site scripting or SQL injection) can be seen
as instances of this general class oftaint-style vulnerabili-
ties. An overview of these vulnerabilities is given in [15].

2.1. Cross-Site Scripting (XSS)

One of the main purposes of XSS attacks is to steal
the credentials (e.g., the cookie) of an authenticated user
by means of malicious JavaScript code. Due to thesand-
box model, JavaScript has access only to cookies that be-
long to the site from which the JavaScript originated. XSS
attacks circumvent the sandbox model by injecting mali-
cious JavaScript into the output of vulnerable applications
that have access to the desired cookies. More details on
this attack can be found in [4]. When speaking in terms of
the sketched class of taint-style vulnerabilities, XSS canbe
roughly described by the following properties:

• Entry Points into the program: GET, POST and
COOKIE arrays.

• Sanitation Routines: htmlentities(), htmlspe-
cialchars(), and type casts that destroy potentially
malicious characters or transform them into harmless
ones (such as casts to integer).

• Sensitive Sinks: All routines that return data to the
browser, such as echo(), print() and printf().

2.2. Other Vulnerabilities

Although our current prototype focuses on XSS vulner-
abilities, other vulnerabilities such as SQL injection and
command injection have been identified as belonging to the
general class of taint-style vulnerabilities and differ only
with respect to the concrete values of a few parameters. The
presented concepts are targeted at their underlying general

characteristics, and adjusting Pixy to the detection of other
instances only requires some engineering effort.

3. Data Flow Analysis

The goal of our analysis is to determine whether it is
possible that tainted data reaches sensitive sinks withoutbe-
ing properly sanitized. For this, we apply the technique of
data flow analysis, which is a well-understood topic in com-
puter science and has been used in compiler optimizations
for decades ([1, 17, 19]). In a general sense, the purpose
of data flow analysis is to statically compute certain infor-
mation for every single program point (or for coarser units
such as functions). For instance, the classicalconstant anal-
ysis1 computes, for each program point, the literal values
that variables may hold.

Data flow analysis operates on the control flow graph
(CFG) of a program. Hence, we first construct a parse
tree of the PHP input file using the Java lexical analyzer
JFlex [12] and the Java parser Cup [5]. The parse tree is
then transformed into a linearized form resembling three-
address code [1], and kept as a control flow graph for each
encountered function.

A straightforward approach to solving the problem of de-
tecting taint-style vulnerabilities would be to immediately
conduct ataint analysison the intermediate three-address
code representation generated by the front-end. This taint
analysis would identify points where tainted data can en-
ter the program, propagate taint values along assignments
and similar constructs, and inform the user of every sen-
sitive sink that receives tainted input. However, to enable
the analysis to produce correct and precise results, signifi-
cant preparatory work is required. For instance, whenever
a variable is assigned a tainted value, this taint value must
not be propagated only to the variable itself, but also to all
its aliases (variables pointing to the same memory location).
Hence, we also perform analias analysisfor providing in-
formation about alias relationships. Moreover, it would be
very beneficial for the taint analysis to know about the lit-
eral values that variables and constants may hold at each
program point. This task is performed byliteral analysis.
Currently, we use the information collected by literal analy-
sis to evaluate branch conditions and ignore program paths
that cannot be executed at runtime (a technique calledpath
pruning). Other potential uses of literals information would
be the resolution of non-literal include statements, variable
variables, variable array indices, and variable function calls.

One of the key features of our analysis is its high preci-
sion, since it is flow-sensitive, interprocedural, and context-
sensitive. Moreover, we are the first to perform alias analy-

1Note that we use the name “literal analysis” instead of the classical
term “constant analysis” in order to prevent confusion withPHP’s con-
stants.

sis for an untyped, reference-based scripting language such
as PHP. Although there exists a rich literature on C pointer
analysis, it is questionable whether these techniques can
be directly applied to the semantically different problem
of alias analysis for PHP references. As mentioned in an
unpublished paper by Xie and Aiken [25], static analysis
of scripting languages is regarded as a difficult problem
and has not achieved much attention so far. In this con-
text, even apparently trivial issues such as the simulationof
the effects of a simple assignment require careful consid-
erations. For instance, multi-dimensional arrays can con-
tain elements that are neither explicitly addressed nor de-
clared. To correctly handle the assignment of such a multi-
dimensional array to another array variable, these hidden
elements must be taken into account. More details on these
and other aspects of the applied analyses can be found in
our full-length technical report [13].

3.1. Limitations

Currently, Pixy does not support object-oriented features
of PHP. Each use of object member variables and methods
is treated in an optimistic way, meaning that malicious data
can never arise from such constructs. In addition, files in-
cluded with “include” and similar keywords are not scanned
automatically. In our experiments, we frequently observed
false positives stemming from these lacking file inclusions,
which we eliminated through manual inclusion. Unfortu-
nately, automation of this manual procedure is not straight-
forward because file inclusions in PHP are dynamic, in con-
trast to the static preprocessor includes in C. This means that
the names of the files to be included can be constructed at
run-time, recursive and conditional inclusions are permit-
ted, and included files can even return values. In this sense,
the inclusion mechanism of PHP strongly resembles that
of function calls, with a number of differences concerning
variable scoping.

4. Empirical Results

We performed a series of experiments with our proto-
type implementation to demonstrate its ability to detect pre-
viously known cross-site scripting vulnerabilities, as well
as new ones. To this end, Pixy was run on six popular,
open source PHP programs. The program files on which
Pixy was evaluated and our prototype itself can be obtained
from our website [13]. Since Pixy does not automatically
continue its analysis into included files yet, we manually
resolved include relationships for the scanned files. More
precisely, we simply provided missing function definitions
and static definitions of global variables, which took less
than an hour for each application. We are currently working

on a straightforward extension that automatically inlinesin-
cluded files, which would eliminate this manual task. Each
file was analyzed in less than a minute using a 3.0 GHz Pen-
tium 4 processor with 1GB RAM, even though our proto-
type still presents many opportunities for performance tun-
ing.

Tables 1 and 2 summarize the results of our experiments.
In three applications, we reconstructed 36 known vulnera-
bilities with 27 false positives (FP’s). In three other applica-
tions, we discovered 15 previously unknown vulnerabilities
with 16 false positives. In these cases, we informed the
authors about the issues and posted security advisories to
the BugTraq mailing list [3]. Pixy also reported a few pro-
gramming bugs not relevant for security, such as function
calls with too many arguments. Note that since these bugs
have no influence on a program’s security properties, they
were counted neither as vulnerabilities nor as false posi-
tives. These results clearly show that our analysis is capable
of finding novel vulnerabilities in real-world applications.

4.1. Case Studies

Detailed descriptions of the discovered vulnerabilities
can be found in the corresponding BugTraq postings. In
this section, we will take a closer look at two interesting
vulnerabilities that demonstrate the requirement to perform
an analysis that is able to track data flows throughout the
program.

The Reviews Module of PhpNuke contains an interesting
flaw related to the use of a superficially harmless-looking
built-in function. Our analyzer makes sure that all built-in
functions are considered to return tainted values by default.
This way, no vulnerabilities can be missed due to built-in
functions that have not been modeled explicitly to return un-
tainted values. Explicit modeling is performed by providing
a short specification in a configuration file that is processed
at start-up. A list of currently modeled built-in functions
can be found in our technical report [13]. False positives
arising from harmless but unmodeled functions can easily
be eliminated by providing a specification of the function’s
true behavior. In Figure 1, a simplified version of the vul-
nerable code shows that the second parameter of function
postcomment is echoed on Line 3. Originally, this warning
was issued because the function urldecode was unmodeled,
and hence, returned a tainted value. However, a look into
the PHP manual revealed that urldecode has to be handled
with care, since it is able to transform benign character se-
quences into dangerous ones, such as transforming %3c into
<. This is why even explicit sanitization prior to the call of
function postcomment fails, which was reported in BugTraq
posting 10493.

Figure 2 shows a simplified version of the file pre-
view static cgi.php in Simple PHP Blog. The sensitive sink

1: function postcomment($id, $title) {
2: $title = urldecode($title);
3: echo $title;
4: }

Figure 1. PhpNuke vulnerability (simplified).

 1: if (...) {
 2: $entry = $_GET[’entry’];
 3: $temp_file_name = $entry;
 4: } else {
 5: $temp_file_name =
 stripslashes($_POST[’file_name’]);
 6: }
 7: echo($temp_file_name);

Figure 2. Simple PHP Blog vulnerability (sim-
plified).

on Line 7 receives the variable $tempfile name, which is
initialized with a tainted value onbothprogram paths of the
“if”-construct on Line 1. If the guarding condition is true,
the variable is initialized with $entry (on Line 3), which was
assigned a tainted value from the GET array before (Line
2). Inside the second branch, $tempfile name is tainted by
a POST variable indirectly over a call to the built-in func-
tion stripslashes. This function returns the taint value of
its parameter and has been modeled to do so. Note that
Pixy would also have correctly detected a vulnerability if
$tempfile name were assigned an untainted value on just
one of the two branches.

4.2. False Positives

Among the 47 false positives that Pixy reported, 14 were
caused by global variables that are initialized dynamically
(e.g., through a database read) inside an included file. As
mentioned previously, we only considered static initializa-
tions during the manual preprocessing step. Since uninitial-
ized globals are conservatively treated as tainted, warnings
were issued at the program points where these variables are
sent back to the user. We are confident, however, that these
false positives will be eliminated when include files are au-
tomatically processed as well.

The second largest group of false positives contains 13
warnings that can be traced back to file reads. In our anal-
ysis, we conservatively regarded values originating from
files as being tainted. In these 13 cases, it turned out that
an attacker is actually not able to inject malicious content
into the files that were read. However, our conservative
approach led to the detection of two previously unknown
vulnerabilities. The ratio between false positives and vul-
nerabilities for this problem could be improved by tracking
the files into which an attacker may be able to inject tainted
values.

Since our alias analysis does not cover aliasing relation-
ships for arrays and array elements, a global array and its
content cannot be untainted by statements that are located
inside functions. In seven cases, a global array element is
untainted inside a sanitization function, followed by an out-
put statement that contains the (incorrectly tainted) global.

An interesting kind of false positive with six warnings
arose while scanning PhpNuke. In the YourAccount mod-
ule, values originating from the user are embedded into the
output as attributes of HTML tags. Although these values
were not thoroughly sanitized prior to their use, the existing
sanitization is sufficient because it makes sure that they do
not contain double quotes. But since the attribute fields are
delimited by double quotes, the attacker’s input is “trapped”
inside these attributes where it is not able to do any harm.

Custom sanitization using regular expressions is a dan-
gerous practice. It is easy to miss dangerous characters,
especially when the cases get more complex and when the
implementor lacks the necessary expertise. Therefore, Pixy
does not consider the use of such methods as sanitization.
In two cases, values that have undergone such a custom san-
itization were reported as tainted. Manual inspection, how-
ever, did not reveal any ways for circumventing the protec-
tion.

The remaining five false positives were due to more or
less complex “if”-constructs that are responsible for un-
tainting a critical variable. Under certain conditions, it
might be possible that none of the branches of the construct
is taken, leaving the variable tainted. However, we did not
find a way to induce such a bypassing condition.

5. Related Work

Currently, there exist only few approaches that deal with
static detection of web application vulnerabilities. Huang
et al. [10] were the first to address this issue in the context
of PHP applications. They used a lattice-based analysis al-
gorithm derived from type systems and typestate, and com-
pared it to a technique based on bounded model checking
in their follow-up paper [11]. A substantial fraction of PHP
files (8% in their experiments) is rejected due to problems
with the applied parser. In contrast, we are able to parse the
full PHP language. Moreover, Huang et al.’s work leaves
out important issues such as the handling of references, ar-
ray elements, or any of the limitations that we addressed in
Section 3.1. Unfortunately, comparing their results to ours
was not possible due to the limited detail of their reports (no
version numbers or advisory ID’s are given). After request-
ing a copy of their tool, the authors informed us of their
plans to commercialize it, which prevents them to share it
with other researchers.

A recent, unpublished paper by Xie and Aiken [25] ad-
dresses the problem of statically detecting SQL injection

Program File LOC Variables Vulnerabilities FP’s Advisories
PhpNuke 6.9 Reviews Module 8409 3113 15 5 BugTraq: 10493,

10524, 365368
YourAccount Module 9070 3452 9 25 BugTraq: 13007,

394971, 394867,
321324

PhpMyAdmin 2.6.0-pl2 selectserver.lib.php 89 23 9 0 PMASA-2005-01
Gallery 1.3.3 search.php 1810 530 2 1 BugTraq: 348514

login.php 1719 488 1 0 BugTraq: 8039
Totals 21097 7606 36 31

Table 1. Known vulnerabilities discovered by Pixy.

Program File LOC Variables Vulnerabilities FP’s Advisories
Simple PHP Blog 0.4.5 previewcgi.php 6938 2342 3 5 TUVSA-0511-001,

previewstatic cgi.php 6883 2316 4 4 BugTraq 415463
colors.php 6971 2313 1 6

Serendipity 0.8.4 personal.inc.php 6588 2305 2 1 TUVSA-0509-001,
BugTraq 412023

Yapig 0.95b view.php 5128 1302 5 0 TUVSA-0510-001,
BugTraq 413255

Totals 29508 10578 15 16

Table 2. Unknown vulnerabilities discovered by Pixy.

vulnerabilities in PHP scripts. By applying a custom, three-
tier architecture instead of using full-fledged data-flow anal-
ysis techniques, they operate on a less ambitious conceptual
level than we do. For instance, recursive function calls are
simply ignored instead of being handled correctly. More-
over, alias analysis is not performed at all, which further
lowers the correctness of their approach. Multi-dimensional
arrays also appear to be unsupported. They apply a heuristic
for resolving simple cases of include statements that seems
to yield good results in practice. It should be easy to incor-
porate this approach into our prototype.

Livshits and Lam [15] applied an analysis supported by
binary decision diagrams presented in [24] for finding se-
curity vulnerabilities in Java applications. Their work dif-
fers from ours in the underlying analysis, which is flow-
insensitive for the most part, and the target language Java,
which is a typed language. This considerably eases the chal-
lenges faced by static analysis.

In [16], a technique for approximating the string output
of PHP programs with a context-free grammar is presented.
While primarily targeted at the validation of HTML output,
the author claims that it can also be used for the detection
of cross-site scripting vulnerabilities. However, without any
taint information or additional checks, it appears to be dif-
ficult to distinguish between malicious and benign output.
Only one discovered XSS vulnerability is reported, and the
observed false positive rate is not mentioned. Moreover, the

presented tool currently supports only “basic features” of
PHP, excluding references.

Engler et al. have published various static analysis ap-
proaches to finding vulnerabilities and programming bugs
in the context of C programs. For example, in [6], the
authors describe a system that translates simple rules into
automata-based compiler extensions that check whether a
program adheres to these rules or not. An extension to this
work is given in [7], where the authors present techniques
for the automatic extraction of such rules from a given pro-
gram. In [2], tainting analysis is used to identify vulnerabil-
ities in operating system code where user supplied integer
and pointer values are used without proper checking.

An alternative approach aiming at the detection of taint-
style vulnerabilities introduces special type qualifiers to the
analyzed programming language. One of the most promi-
nent tools that applies this concept is CQual [8], which has
been, among other things, used by Shankar et al. [22] to
detect format string vulnerabilities in C code. However, it
remains questionable whether this technique can be applied
to untyped scripting languages.

6. Conclusions

Web applications have become a popular and wide-
spread interaction medium in our daily lives. At the same
time, vulnerabilities that endanger the personal data of users
are discovered regularly. Manual security audits targetedat

these vulnerabilities are labor-intensive, costly, and error-
prone. Therefore, we propose a static analysis technique
that is able to detect taint-style vulnerabilities automatically.
This broad class includes many types of common vulnera-
bilities such as SQL injection or cross-site scripting. Our
analysis is based on data flow analysis, a well-understood
and established technique in computer science. To improve
the correctness and precision of our taint analysis, we con-
ducted a supplementary alias analysis as well as literal anal-
ysis. All our analyses are interprocedural, context-sensitive
and flow-sensitive for providing a high degree of precision
and keeping the number of false positives low, making our
tool useful for real-world applications.

We implemented our concepts in Pixy, an open-source
Java tool able to detect cross-site scripting flaws in PHP
scripts. In the course of our experimental validation, we
discovered and reported 15 previously unknown vulnerabil-
ities and reconstructed 36 known vulnerabilities, while ob-
serving a moderate false positive rate of around 50% (i.e.,
one false positive for each vulnerability on average).

There is an urgent need for automated vulnerability de-
tection in Web application development, especially because
Web applications are growing into large and complex sys-
tems. We believe that our presented concepts provide an
effective solution to this problem, therefore offering bene-
fits to both users and providers of Web applications.

7. Acknowledgments

This work has been supported by the Austrian Science
Foundation (FWF) under grant P18368-N04. We would
like to thank our shepherd for his guidance in preparing the
camera-ready version of the paper, and Markus Schordan
for insightful discussions on the theory of data flow analy-
sis and abstract interpretation.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: princi-
ples, techniques, and tools. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1986.

[2] K. Ashcraft and D. Engler. Using programmer-written com-
piler extensions to catch security holes. InIEEE Symposium
on Security and Privacy, 2002.

[3] BugTraq. BugTraq Mailing List Archive.
http://www.securityfocus.com/archive/1, 2005.

[4] CERT. CERT Advisory CA-2000-02: Malicious
HTML Tags Embedded in Client Web Requests.
http://www.cert.org/advisories/CA-2000-02.html, 2005.

[5] CUP. CUP: LALR Parser Generator in Java.
http://www2.cs.tum.edu/projects/cup/, 2005.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. InOSDI 2000, 2000.

[7] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring er-
rors in systems code. InSOSP ’01: Proceedings of the 18th
ACM Symposium on Operating Systems Principles, 2001.

[8] J. S. Foster, M. Faehndrich, and A. Aiken. A theory of type
qualifiers. InPLDI ’99: Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and
Implementation, 1999.

[9] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web
application security assessment by fault injection and behav-
ior monitoring. InWWW ’03: Proceedings of the 12th In-
ternational Conference on World Wide Web, 2003.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo. Securing web application code by static analysis
and runtime protection. InWWW ’04: Proceedings of the
13th International Conference on World Wide Web, 2004.

[11] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and
S.-Y. Kuo. Verifying web applications using bounded model
checking. InDSN, 2004.

[12] JFlex. JFlex: The Fast Scanner Generator for Java.
http://jflex.de, 2005.

[13] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting XSS vulnerabilities.
http://www.seclab.tuwien.ac.at/projects/pixy/, 2006.

[14] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:
A client-side solution for mitigating cross-site scripting at-
tacks. InThe 21st ACM Symposium on Applied Computing
(SAC 2006).

[15] V. B. Livshits and M. S. Lam. Finding security errors in
Java programs with static analysis. InProceedings of the
14th Usenix Security Symposium, Aug. 2005.

[16] Y. Minamide. Static approximation of dynamically gener-
ated web pages. InWWW ’05: Proceedings of the 14th In-
ternational Conference on World Wide Web, 2005.

[17] S. S. Muchnick.Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[18] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting. InIFIP Security 2005, 2005.

[19] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., 1999.

[20] PHP. PHP: Hypertext Preprocessor. http://www.php.net,
2005.

[21] T. Pietraszek and C. V. Berghe. Defending against injec-
tion attacks through context-sensitive string evaluation. In
Recent Advances in Intrusion Detection 2005 (RAID), 2005.

[22] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers. In
Proceedings of the 10th USENIX Security Symposium, 2001.

[23] Stephen Shankland. Andreessen: PHP succeeding where
Java isn’t. http://www.zdnet.com.au, 2005.

[24] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implemen-
tation, 2004.

[25] Y. Xie and A. Aiken. Static Detection of Se-
curity Vulnerabilities in Scripting Languages.
http://glide.stanford.edu/yichen/research/sec.ps, 2006.

