
Preventing Cross Site Request Forgery Attacks

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel
Secure Systems Lab

Technical University of Vienna
Email: {enji,ek,chris}@seclab.tuwien.ac.at

Abstract

The web has become an indispensable part of our lives.
Unfortunately, as our dependency on the web increases, so
does the interest of attackers in exploiting web applications
and web-based information systems. Previous work in the
field of web application security has mainly focused on the
mitigation of Cross Site Scripting (XSS) and SQL injection
attacks. In contrast, Cross Site Request Forgery (XSRF) at-
tacks have not received much attention. In an XSRF attack,
the trust of a web application in its authenticated users is
exploited by letting the attacker make arbitrary HTTP re-
quests on behalf of a victim user. The problem is that web
applications typically act upon such requests without ver-
ifying that the performed actions are indeed intentional.
Because XSRF is a relatively new security problem, it is
largely unknown by web application developers. As a re-
sult, there exist many web applications that are vulnerable
to XSRF. Unfortunately, existing mitigation approaches are
time-consuming and error-prone, as they require manual ef-
fort to integrate defense techniques into existing systems. In
this paper, we present a solution that provides a completely
automatic protection from XSRF attacks. More precisely,
our approach is based on a server-side proxy that detects
and prevents XSRF attacks in a way that is transparent to
users as well as to the web application itself. We provide
experimental results that demonstrate that we can use our
prototype to secure a number of popular open-source web
applications, without negatively affecting their behavior.

1 Introduction

Cross site request forgery [18, 20, 23] (abbreviated
XSRF or CSRF, sometimes also called “Session Riding”),
denotes a relatively new class of attack against web applica-
tion users. By launching a successful XSRF attack against a
user, an adversary is able to initiate arbitrary HTTP requests
from that user to the vulnerable web application. Thus, if
the victim is authenticated, a successful XSRF attack effec-
tively bypasses the underlying authentication mechanism.
Depending on the web application, the attacker could, for

instance, post messages or send mails in the name of the
victim, or even change the victim’s login name and pass-
word. Furthermore, the damage caused by such attacks
can be severe. In contrast to the well-known web security
problems such as SQL injection and XSS, cross site request
forgery (XSRF) appears to be a problem that is little known
by web application developers and the academic commu-
nity. As a result, only few mitigation solutions exist. Un-
fortunately, these solutions do not offer complete protection
against XSRF or require significant modifications to each
individual web application that should be protected.

In this paper, we present a solution that provides pro-
tection from XSRF attacks. More precisely, our approach is
based on a server-side proxy that detects and prevents XSRF
attacks in a way that is transparent to users as well as to the
web application itself. One important advantage of our so-
lution is that there is only minimal manual effort required
to protect existing applications. Our experimental results
demonstrate that we can use our prototype to secure a num-
ber of popular open-source web applications against XSRF
attacks, without negatively affecting the applications’ be-
havior. An expanded version of this paper containing addi-
tional details can be found on our web site [6].

2 Cross Site Request Forgery

In this section, we introduce the concepts and mecha-
nisms behind XSRF attacks in more detail.

2.1 User Authentication in Web Applica-
tions

HTTP is a stateless protocol that is not able to recognize
when a number of requests all belong to a particular user.
This is cumbersome when applications have to support user
authentication, as there is no straightforward mechanism
to identify requests of a user that has already performed a
successful login. One way to overcome this problem is to
preserve user-specific state in client-side cookies [12]. By
inserting a Set-Cookie HTTP header into the server’s
reply, a web application can instruct the client browser to

create a cookie with a given name and value. In all subse-
quent requests to the server, the browser automatically in-
cludes this cookie information, using the Cookie HTTP
header. Based on this cookie information, a web applica-
tion can then associate requests with certain clients.

Of course, using cookies to store information is only
suitable for data that may be freely modified by the client.
Because data is stored on the client’s machine, it is under the
user’s direct control. For some web applications, informa-
tion must not be modified between requests. In other cases,
the amount of data that is associated with a certain user is
too large to constantly exchange it between the client and
the server. To address these issues, web applications typi-
cally make use of sessions.

Figure 1. Using sessions for server-side
state.

A session is established to recognize requests that belong
together, and to associate these requests with (session) data
stored at the server. To this end, each session is assigned a
unique identifier (the session ID), and the client is only pro-
vided with this identifier. With each request, the client pro-
vides its ID (see Figure 1), which the web application can
subsequently use to retrieve the appropriate session data.

There are two possibilities to have the client attach
the session IDs to each request. The first possibility is
to perform URL rewriting. In this case, hyperlinks and
other request triggers (such as HTML forms) are aug-
mented with an additional parameter that contains the
session ID. For instance, the hyperlink with the relative
target location ./index.php might be extended into
./index.php?sessid=12345 to store the session ID
with the value “12345”. URL rewriting can be implemented
by the application. However, many application run-time and
development environments (for example, PHP [13]) already
provide an automatic rewriting mechanism to ease the task
for web developers. The second possibility to include ses-
sion information is to set cookies, which are automatically
sent by the user browser with each request.

A convenient side-effect of sessions is that they can be
used to track the authentication state of a user. For instance,
after a successful authentication of the client, a web appli-
cation could store a boolean value auth=true for future
reference. When a user continues the current session by
sending subsequent requests, the web application can easily

determine whether that user is already logged in by consult-
ing this boolean value. As a result, the user is able to per-
form privileged actions without the need to explicitly sub-
mit a password each time. Instead, the authentication oc-
curs implicitly by the underlying session mechanism. That
is, the session ID serves as an implicit authentication token.

2.2 Exploiting Session Mechanisms

The presented concepts behind web application sessions
imply that the session ID temporarily has the same signif-
icance as the user’s original credentials. That is, as long
as the session has not expired, a web application treats re-
quests with valid session IDs as requests of the user who
initially started the session. If an attacker manages to ob-
tain the session ID of an authenticated user, it is possible to
issue requests with the same privileges as this user. As a
result, the session ID has become a primary target for web
application attacks. For instance, one of the goals of cross
site scripting (XSS) attacks is to inject malicious JavaScript
code into the reply of a vulnerable application with the aim
to leak the session ID to the attacker. In such attacks, the at-
tacker abuses the fact that web applications cannot reliably
distinguish between requests with session IDs originating
from the legitimate user, and requests with stolen session
IDs originating from an attacker.

In contrast, cross site request forgery (XSRF) is a rel-
atively unknown form of attack that is not motivated by
the attempt to steal the session ID. Instead, XSRF attacks
abuse the fact that most web applications cannot distin-
guish between intended user requests, and requests that
the user issued because she was tricked to do so. For
instance, assume that the online banking application of
www.bigbank.com receives the following request from
an authenticated user:

GET /transfer.php?amount=10000&to=7777

The application interprets this as a request to transfer 10,000
USD from the user’s bank account to the account with num-
ber 7,777. Since BigBank’s web application does not take
into account the possibility of XSRF attacks (unfortunately,
this problem is present in many other web applications),
it optimistically assumes that the request indeed originated
from the HTML form designated for this purpose (shown
in Figure 2), and faithfully carries out the transaction. In
reality, however, the GET request was generated in the fol-
lowing way: After paying an invoice via online banking,
the user forgets to log out and proceeds by surfing to some
other web sites. One of these sites, evilxsrf.org, con-
tains the following hyperlink:

<a href=’www.bigbank.com/transfer.php?
amount=10000?to=7777’>Click here

for something really interesting.

Figure 2. Legitimate money transaction form
of www.bigbank.com.

As soon as the user clicks on this link, the previously pre-
sented GET request is sent to www.bigbank.com. Since
the user forgot to log out, the session has not been inval-
idated yet and the cookie with the session ID still exists.
As a result, the user’s browser automatically appends the
cookie to the request, which is successfully authenticated by
the banking application. Without intending so, the user has
just transferred a considerable amount of money to some
unknown bank account.

The described, simple attack will probably work only
against users that are not security-aware and have limited
knowledge about the mechanisms used in web applications.
For instance, the value of the href attribute will appear
in the browser’s status bar as soon as the user moves the
mouse pointer above the link (although this could possibly
be avoided by using JavaScript code that hides the status
bar). Also, users become increasingly aware of the secu-
rity implications of clicking on links in mails. However, the
critical request can also be performed through the following
src attribute of an image tag:

<img src=’www.bigbank.com/transfer.php?
amount=10000?to=7777’>

When the user visits the page containing this tag,
the browser immediately attempts to retrieve the
image by sending the appropriate GET request to
www.bigbank.com. Compared to the previous case,
the user did not even have to actively follow any link,
which clearly makes the attack more dangerous. Moreover,
XSRF attacks are not limited to GET requests. Figure 3
demonstrates how an equivalent POST request can be
assembled through an HTML form and automatically
submitted by a short piece of JavaScript code. Once again,
visiting the malicious HTML page is sufficient for the
attack to succeed. Note that although disabling JavaScript
would prevent the automatic submission of the form in this
case, this measure is not suitable as general cure against
XSRF attacks. This underlines the fact that XSRF problems
are independent of XSS vulnerabilities and do not rely on
the execution or injection of malicious JavaScript code.

The analysis of the mechanisms behind XSRF attacks
leads to the following observation: As long as a user is
logged in to a web application, she is vulnerable. A sin-
gle mouse click or just browsing a page under the attacker’s
control can easily lead to unintended requests. Most web

Figure 3. Malicious XSRF page for POST pa-
rameters.

applications are not aware of this fact, leaving their users in
danger.

3 Existing Mitigation Techniques

A common advice for mitigating the XSRF threat that
appears frequently in the web development community is
to use POST instead of GET parameters. However, as we
demonstrated in the previous section, this approach is not
adequate for preventing XSRF attacks. It only raises the bar
for the attacker, as it closes certain attack vectors such as the
use of image tags. In addition, completely removing the use
of GET parameters is sometimes not possible when it would
result in applications that are more cumbersome for users to
navigate and more difficult for developers to implement.

Checking the HTTP Referer header would be an ef-
fective countermeasure if the web application could rely on
its correctness. In the previous example, the request that
is generated by clicking the malicious link would contain
a referrer to evilxsrf.org. By maintaining a white-
list of accepted referrers, the banking application could de-
duce that this request was initiated due to an XSRF at-
tack, and refuse to perform the transaction. Unfortunately,
modern browsers can be configured to send empty or even
arbitrary values for this header. Moreover, sending the
referrer header is discouraged, as it may result in leak-
ing sensitive information to third parties (as mentioned in
RFC 2616 [17]). This leads to the question of how to treat
empty referrer headers. When classifying requests with an
empty referrer header as valid, it would become impossible
to detect attacks against users who follow the recommen-
dation and disable the transmission of the referrer header.
On the other hand, when regarding such requests as XSRF
attacks, all requests of these users would be rejected. This
dilemma is further aggravated by the fact that an attacker
can make use of several browser-specific tricks to trigger an
XSRF request with an empty referrer [10].

From the previous explanation, it should become clear
that XSRF attacks only work when a cookie is used to store
the session ID. The reason is that the browser automatically
includes cookies into requests, even when a user clicks on a
simple link. In case of URL rewriting, on the other hand, the
session ID has to be embedded into the request trigger (e.g.,

a hyperlink or a form) explicitly. Thus, when the attacker
attempts to create a page with a hyperlink that performs the
XSRF request, this link will not contain the proper session
ID and thus, will not result in a successful attack. Of course,
the adversary cannot prepare the link with a correct session
ID, because he has no knowledge about this identifier; oth-
erwise he could use this ID directly to impersonate the au-
thenticated user.

The problem is that cookie-based session management
is much more popular and wide-spread for a number of rea-
sons, some of which are even security-related [5, 14, 15].
For example, in URL-based solutions, the session ID ap-
pears in the browser’s location bar. One implication is
that a user might bookmark a page together with the ses-
sion ID. When visiting the web site via this bookmark, the
web server might again associate the session with this ID
(this type of session management is called permissive and
is present, for example, in PHP). As a result, one session
ID is used for multiple sessions, increasing the chances for
an attacker to successfully steal and exploit the ID. Another
possibility is that an attacker could simply peek over a vic-
tim’s shoulder to steal the session ID (e.g., in a public Inter-
net cafe).

The best solution proposed so far is the use of a shared
secret (or token) between the client and the server to iden-
tify the actual origin of a request. For instance, the exam-
ple banking application from the previous section could be
adapted such that the form shown in Figure 2 contains an
additional, hidden token field. This token must be gen-
erated by the application (such that it is not easily guess-
able by an attacker) and associated with the current ses-
sion. Requests for financial transactions are only processed
if they contain the correct token. The drawback of this
approach is the considerable amount of manual work that
it involves. Many current web applications have evolved
into large and complex systems, and retrofitting them with
the mechanisms necessary for token management would re-
quire detailed application-specific knowledge and consid-
erable modifications to the application source code. Even
more important, there is no guarantee that the modified code
is indeed free of XSRF vulnerabilities, as developers tend to
make errors and omissions.

XSRF attacks are still relatively unknown to web devel-
opers and attackers. Nevertheless, we believe that the atten-
tion paid to this class of attacks will reach that of more tra-
ditional XSS attacks in the near future as the attack becomes
better known and understood. Unfortunately, current miti-
gation techniques have shortcomings that limit their general
applicability. To address this problem, the following section
presents a novel and automatic approach for XSRF protec-
tion.

4 A Proxy-Based Solution

To be useful in practice, a mitigation technique for XSRF
attacks has to satisfy two properties. First, it has to be ef-
fective in detecting and preventing XSRF attacks with a
very low false negative and false positive rate. Second, it
should be generic and spare web site administrators and pro-
grammers from application-specific modifications. Unfor-
tunately, all existing approaches presented in the previous
section fail in at least one of the two aspects.

Our solution to the XSRF problem is to decouple the
necessary security mechanisms from the application and to
provide a separate module that can be plugged into exist-
ing systems with minimal effort. More precisely, we pro-
pose a proxy that is placed on the server side between the
web server and the target application. This proxy is able
to inspect and modify client requests as well as the appli-
cation’s replies (output) to automatically and transparently
extend applications with the previously sketched shared se-
cret technique. In particular, the proxy has to

• ensure that replies to an authenticated user are modi-
fied in such a way that future requests originating from
this document (i.e, through hyperlinks and forms) will
contain a valid token, and

• take countermeasures against requests from authenti-
cated users that do not contain a valid token.

An essential prerequisite for this mechanism is the
proxy’s ability to associate a user’s session with a valid to-
ken. To this end, the proxy maintains a token table with
entries that map session IDs to tokens.

By decoupling the proxy from the actual application, the
XSRF protection can be offered transparently for (virtually)
all applications. Note that, alternatively, our proxy could
also be located between the client and the web server. How-
ever, this case could lead to problems in combination with
SSL connections. With our proposed architecture, SSL is-
sues are directly handled by the web server, which eases the
tasks that are to be performed by the proxy.

In the following sections, we present a more detailed de-
scription of how requests to and replies from the web appli-
cation are handled, along with illustrative examples.

4.1 Request Processing

Figure 4 provides an overview of the steps that the proxy
has to take during request processing. As a first step, we
check whether the request contains a session ID or not. If
there is no session ID in the request, it is classified as be-
nign. The reason is that since the request does not refer to
an existing, authenticated session, it is not able to perform
any privileged actions. Thus, we can safely pass the request
to the target application.

Figure 4. Request processing.

If the request does contain a session ID, we consult the
token table to check whether there already exists an entry
with a corresponding token. If there is such an entry, we
require that the request also contains this token. A request
that fails to satisfy this condition is classified as an XSRF at-
tack. This is because legitimate requests, originating from a
document generated by the protected application, are guar-
anteed to always contain a token when they use a session
ID. The reason is that the documents produced by the ap-
plication are modified such that this token will be present
(the exact mechanism to achieve this is described in detail
in Section 4.2).

The action to be taken when an XSRF request is detected
is configurable by the site administrator. In our experi-
ments, we generated a warning message to inform the vic-
tim about the attack, together with a (correctly tokenized)
link to the application’s main page. Note that there is no
need to terminate the user’s current session when an XSRF
attack is detected. After following the link provided in the
generated warning message, the user can continue her work
normally. An even more convenient, but less educational,
alternative would be to instantly redirect the user to the main
page, without the need for any additional interaction.

In the case when the request contains a session ID that
does not exist in the token table, we have to assume that a
new session was established. The proxy generates a new,
random token and inserts the token, together with the ses-
sion ID, into the token table. In addition, the request is
passed to the target application.

4.2 Reply Processing

As discussed briefly in the previous section, the task of
the reply processing step is to extend the output of a web
application such that a subsequent request of the user con-
tains the correct token. This is achieved in a fashion similar
to URL rewriting. Assume that the proxy has to process an
output page of the target application containing the follow-
ing relative hyperlink:

LogOut

Assume further that the proxy has already determined that
the client is authenticated, and that a certain session ID is in
use. In this case, it is necessary to rewrite the hyperlink’s

URL such that it contains the token associated with this ses-
sion ID:

<a href=’index.php?action=logout
&token=99’>LogOut

When the user follows this link, the mechanism has ensured
that the proper token is transmitted.

The name of the parameter that stores the token (“token”
in this example) can be chosen arbitrarily, but must not in-
terfere with the names of other parameters used by the target
application. The token’s value (“99”) is retrieved from the
token table that the proxy maintains.

At this point, an important question is the following:
How can the proxy determine whether a client is authen-
ticated or not? For our purposes, we treat the state “a client
is authenticated” as equal to “a client has an active session.”
This is a safe assumption, because XSRF attacks cannot
succeed when there is no session information that can be
exploited to force the victim into performing privileged ac-
tions (that is, actions which require previous authentication)
on behalf of the attacker.

The next question is how to determine whether a user has
an active session or not. Programming languages such as
PHP provide a built-in session infrastructure that could be
consulted about whether there exists such a session. How-
ever, many applications make use of custom session man-
agement techniques. Sometimes, session information is
even stored in a back-end database. In such cases, the tar-
get application could be instrumented with functions that
enable the proxy to issue appropriate queries about the ses-
sion state. Unfortunately, this would lead to the undesirable
necessity to perform application-specific modifications.

We solve the problem of determining whether a session
exists in the following way. Basically, there are two cases
that have to be distinguished, depending on whether the ap-
plication sets a session cookie while processing a client’s
request or not. We can check this by searching the ap-
plication’s reply for an HTTP Set-Cookie header. Of
course, this approach requires our system to distinguish be-
tween session cookies (i.e., cookies that store session infor-
mation) and cookies that are set for other purposes. While
it might be possible to use heuristics to automatically iden-
tify session cookies, we currently require the administrator
of the system to manually specify their names. Typically,
this is straightforward, as many applications make use of

Figure 5. Reply processing.

the built-in session infrastructure provided by the run-time
environment. For example, when PHP is used, the name
of the session cookie defaults to “PHPSESSID.” If a ses-
sion cookie is set in the application’s reply, we assume that
there exists a session, and this session has an ID equal to
the session cookie’s value. If a session cookie is not set in
the reply, we further investigate the client’s request that cor-
responds to the reply. If this request contains a session ID,
we conclude again that there exists a session. Such a situa-
tion arises regularly when a client is already logged in, and
her browser automatically sends the authentication cookie
to the server along with each request.

At this point, note that our approach is safe (i.e., it does
not miss any attacks). If there exists no session, although
the proxy assumes that there is one, tokens are included into
the applications’ documents, but its regular behavior is not
affected. On the other hand, if we miss an active session,
the reply would not be instrumented with the token. Subse-
quently, this would lead to a false XSRF alarm for the next
user request.

After determining that there exists an active session, we
query the token table for an associated token. If there is no
such entry, it means that the session has been newly cre-
ated. Hence, we generate a random token and add a cor-
responding entry to the token table. Finally, the reply is
instrumented with the token before returning it to the client.
The following fields have to be modified:

• href attributes of a tags.

• action attributes of form tags.

• src attributes of frame and iframe tags.

• onclick attributes of button tags.

• refresh attributes of button tags.

• url attributes of refresh meta tags.

During our experiments, we did not encounter any other
fields that required rewriting. However, extending the
rewriting engine to take into account more fields would be
straightforward. An overview of the complete reply pro-
cessing step is given in Figure 5.

4.3 Token Table Cleanup

The token table should be freed from stale entries regu-
larly to save memory and CPU time. To this end, we ex-

tended the table by a third column that holds timestamps,
which indicate the point in time when the corresponding
entry was last used. When the time that passed since this
point is longer than a configurable session life-time (that
defaults to 24 minutes, in accordance with PHP’s default
session life-time), the entry is removed.

4.4 Discussion of Attacks against the Sys-
tem

Our proxy cannot prevent XSRF attacks if the target
application fails to defend against certain other types of
attacks. For instance, if insufficient measures are taken
against cross site scripting (XSS), the adversary could in-
ject malicious JavaScript into the application that steals the
user’s cookies (containing the session ID). This underlines
once more that a reasonable level of security can only be
achieved by preparing against a wide range of possible at-
tack vectors.

Our proxy treats all request triggers sent by the target
application as legitimate. Hence, all these triggers are auto-
matically instrumented with valid tokens. This implies that
if an attacker managed to inject an XSRF hyperlink into the
reply of a protected application, our proxy would automat-
ically augment this hyperlink with a valid token as well.
This would allow the adversary to induce requests to pages
that accept GET parameters. Using POST instead of GET
requests would raise the bar for the attacker in this case.
However, the attacker could also point the injected link to a
site under his control. When the victim’s browser requests a
page on this site, the Referer header could be used to ex-
tract the token, allowing the attacker to create valid POST
requests as well. To mitigate these problems, the attacker
should not be allowed to inject request triggers into an ap-
plication, a requirement that should be fulfilled by security-
aware systems in any case. In addition, clients can decrease
their exposure by disallowing the transmission of Referer
headers (e.g., by configuring their browser appropriately, or
by using a firewall).

Given the design of our system, an attacker can obtain
the token for any session ID that he presents to the proxy.
To this end, the attacker can simply send a request with a
particular session ID to the web application and afterwards
simulate an XSRF attack against this session. Then, he can
extract the associated token from the generated reply (for in-
stance, from the link that is provided along with our warn-
ing message). Fortunately, this ability is of no use to the

attacker because he has no knowledge about the session ID
that a client uses. Otherwise, there would be no need to per-
form an XSRF attack. Instead, the attacker could directly
impersonate the victim using the session ID. Of course, the
range of possible session IDs must be large enough to thwart
any brute-force guessing attempts.

Finally, the attacker could launch a denial-of-service at-
tack against the proxy. Recall that the token table is ex-
tended by a new entry whenever an incoming request con-
tains a session ID that does not exist in the token table.
Thus, the adversary could flood the token table with a large
number of session IDs with the intention of significantly
degrading the proxy’s performance. However, the same at-
tack could be launched already against most web servers
that track user sessions. The reason is that many applica-
tions start to issue session IDs at the first visit of a client,
and not after the client has logged in. This corresponds ex-
actly to the behavior of our proxy. Hence, for these systems,
the possibility for such denial-of-service attacks is not orig-
inally introduced by the proxy.

4.5 Eliminating State

As mentioned previously, the token table associates ses-
sion IDs with tokens. This explicit, stateful mapping can
be replaced by a mapping that requires no state at all to be
stored by the proxy. To this end, a token is computed by
applying a hash function based on a secret server key to a
session ID. As this approach does not require the explicit
storage of session ID to token mappings (the token value
can always be computed from the session ID), it eliminates
the DoS attack vector sketched in Section 4.4. Another ma-
jor difference compared to the token table approach is that
the mappings remain constant over time. When using a to-
ken table, mappings change as they are introduced with ran-
domly generated tokens and removed when they expire.

At first glance, static mappings might appear dangerous
from a security point of view. An attacker could, in the-
ory, construct an explicit representation of the hash function
that is used by sending all possible session IDs to the server
and writing down the observed tokens in return. By invert-
ing this mapping, the attacker could deduce the session ID
from the user’s token (modulo hash collisions). This would
turn the token into a piece of information worth stealing, in-
creasing the attacker’s opportunities. However, reconstruct-
ing even small parts of the hash function is not feasible in
practice due to the vast number of possible session IDs. In
PHP, for example, the space for session IDs comprises 62

32

entries (32 digits or case-sensitive characters from a to z).
For harvesting just 0.01% of all possible mappings in one
year, an attacker would have to issue 7 ∗ 10

45 requests per
second. An even higher level of security could be achieved
by changing the hash function each year, invalidating an at-
tacker’s previous harvesting efforts. The resulting conve-
nience penalty for users with active sessions would be min-

Figure 6. JavaScript snippet from PhpNuke
with modifications (in boldface).

imal, as users with incorrect tokens are immediately pro-
vided with a link containing the correct token.

4.6 Limitations

The presented concepts rely on the assumption that all
request triggers (such as hyperlinks and action attributes
of forms) are directly available in the output generated by
the target application. If this is not the case, reply process-
ing misses certain request triggers, which can result in sub-
sequent false XSRF alarms. For instance, assume a client-
side JavaScript is responsible for constructing a hyperlink
that points back into the target application. At the time of re-
quest processing, this hyperlink is not detected. Hence, the
link will eventually lack the necessary token, and result in a
false XSRF warning when the client follows it. Fortunately,
this is a minor issue for a number of reasons. First, such
cases are very rare in practice. During our experiments,
we observed this effect in not more than four select boxes.
Moreover, adjusting the involved JavaScript such that it also
integrates the token into the generated link is a trivial task
that does not require any application-specific knowledge.
For instance, Figure 6 shows such a JavaScript snippet from
PhpNuke after our one-line modification (represented by the
passage in boldface). The modified code simply extracts the
token from the xsrf token attribute of the document’s
html tag and appends it to the constructed URL. The token
was previously embedded into the html tag by the proxy’s
rewriting engine. By adapting the JavaScript code at all of-
fending locations, which took less then ten minutes for each
application, we successfully eliminated all false warnings.
Finally, note that this issue does not represent a gap in our
security measures. There is no way for the attacker to ex-
ploit this issue and launch a successful XSRF attack.

5 Implementation

To demonstrate the feasibility of our concepts, we imple-
mented NoForge, a server-side proxy that is able to defend
PHP applications against XSRF attacks. As explained pre-
viously, this proxy is located between the web server and the
protected web applications. To realize this in a straightfor-
ward fashion, we decided to implement the proxy as wrap-
per functions around those PHP applications that we intend
to protect. These wrapper functions check the input and
output of the application and perform the necessary request
and reply processing.

Table 1. Tested Applications
Application Version Downloads Exploits

phpBB 2.0.19 10,483,075 Delete postings.

Send postings.

phpMyAdmin 2.8.0.2 9,494,550 Delete databases.

Create databases.

Gallery 2.0.4 3,937,352 None found.

XOOPS 2.0.13.2 3,448,408 None found.

phpNuke 7.0 2,727,943 Delete messages.

Add messages.

Coppermine Photo Gallery 1.4.4 1,981,777 Modify user accounts.

Make existing albums world-writable.

Squirrelmail 1.4.6 1,905,277 Change user information.

Send mails.

In our test environment, we added simple alias rules to
the configuration of the Apache web server that match re-
quests to protected applications and redirect these requests
to the proxy wrapper functions. After an incoming request
is processed, control is passed to the target application. To
be able to process and modify the output generated by the
target application before this output is returned to the client,
we make use of the output buffering mechanism supplied
by PHP. This way, all data generated by the target appli-
cation is redirected into a buffer that can then be used for
the required post-processing step. Note that PHP’s output
buffers are stackable, which means that this solution works
even if the target application performs output buffering it-
self. During reply processing, the task of instrumenting the
output with a token is taken over by a Java program based
on the HTMLParser [2] package (a package for parsing and
modifying HTML code).

During the implementation of the proxy wrapper rou-
tines, we encountered the following problem: The detection
of an active session requires that the HTTP headers returned
to the client are inspected. Unfortunately, PHP offers no di-
rect mechanisms to access these headers. The output that is
written into the proxy’s output buffer only contains the mes-
sage body. We solved this problem by equipping the proxy
with additional wrappers around those PHP functions that
are responsible for generating the interesting headers (such
as header(), setcookie(), or session start()).
Since it is not possible to overwrite built-in PHP functions,
we had to write a simple sed script that converts calls to
these built-in functions into calls to our wrapper functions.
For instance, a call to header() is automatically rewritten
into a call to a wrapper function called xsrf header().
Note that this trivial modification to the target application is
a one-time, fully automatic effort and highly reliable due to

its simplicity. Alternatively, the proxy could also be imple-
mented on the network level, where it has full access to the
complete HTTP stream.

Another implementation issue we encountered was that
if the target application halted program execution using
the exit() or die() function, execution of our proxy
stopped as well. As a result, no reply processing was per-
formed. In this case, we successfully applied the same so-
lution as before. By providing additional wrappers to the
offending functions, we were able to catch such calls and
initiate proper processing of the reply.

To summarize, here are the steps that are necessary for
protecting a web application with our prototype implemen-
tation:

1. Add an appropriate alias to the Apache configuration.

2. Execute the sed script on the target application to en-
able the proxy’s wrapper functions.

3. Specify the cookie names that the target application
uses to store session IDs (typically, this defaults to
“PHPSESSID”).

4. Specify the page that the user shall be redirected to in
case of an XSRF attack.

These steps typically take less that five minutes for each
application. Clearly, this process is far less time-consuming
than manually adapting the whole target application to pre-
vent XSRF attacks.

6 Experimental Results

To test our implementation, we chose the current stable
releases of the seven largest (in terms of all-time down-

loads) open-source PHP web applications from Source-
Forge [22]. The high number of downloads (see Table 1) in-
dicates that these applications are popular and wide-spread.
Despite the fact that these applications are popular and
well-maintained, we quickly discovered XSRF vulnerabil-
ities in five of the applications. The two remaining ones,
Gallery 2.0.4 and XOOPS 2.0.13.2, appeared to be immune
to XSRF attacks, although we did not conduct exhaustive
tests or source code reviews in pursue of XSRF vulnerabil-
ities.

For the five vulnerable applications, we constructed a
number of XSRF exploits that modify important data by
abusing the privileges of an authenticated user. For instance,
we managed to post and delete messages from a forum in
the name of the victim, send mail, or even change the user
name and password of the current user, resulting in iden-
tity theft. A comprehensive list of the created exploits is
provided in Table 1.

Our first test evaluated the proxy’s ability to protect vul-
nerable applications. After verifying that our exploits were
working properly, we installed the proxy and repeated the
attacks. This time, every XSRF attempt was correctly de-
tected.

Apart from protecting applications, a central requirement
that the proxy has to fulfill is to not interfere with the nor-
mal application behavior (both regular behavior as well as
behavior in case of errors). To test this property, we can
observe and compare the application’s behavior without the
proxy’s protection to the behavior with enabled XSRF pro-
tection. If the two results are identical, the proxy succeeded
in performing its task transparently. Hence, we applied the
following test procedure for each application:

1. Log into the application.

2. On the following page, if there is a request trigger (e.g.,
a hyperlink) that was not activated yet:

(a) Activate the next unvisited request trigger. If the
trigger is a form, test it with correct as well as
with incorrect input.

(b) Hit the browser’s “back” button.

(c) Continue with Step 2.

3. Log out.

Note that these tests also cover the correct behavior of
the browser’s “back” button, which is a widely used conve-
nience feature that must not be broken by XSRF counter-
measures. Also note that the use cases that were targets of
our demonstration exploits have already been tested in the
previous stage (i.e., while verifying that the XSRF protec-
tion works). In addition to this systematic procedure, we
also chose some random work flows typical for the appli-
cation in question. Altogether, we are confident that the
coverage of our tests is large enough to give representative

results. There was not a single case in which we observed
deviant behavior caused by the presence of the proxy.

As far as performance is concerned, we observed no no-
ticeable delay when interacting with the applications pro-
tected by our proxy. This is satisfying, as we implemented
our prototype without performance in mind, and it still rep-
resents many opportunities for optimization. Also, by im-
plementing the proxy and the rewriting engine in a language
such as C or C++ instead of in PHP and Java, an additional
boost in performance can be expected. Another alternative
implementation would be to turn the proxy’s application
logic into a module for the Apache web server, or integrate
it into the already available mod security [11] module.

7 Related Work

The detection of web-based attacks has received consid-
erable attention because of the increasingly critical role that
web-based services are playing on the Internet. This in-
cludes web application firewalls [19] to protect applications
from malicious requests as well as intrusion detection sys-
tems that attempt to identify attacks against web servers and
their applications [1, 9]. Also, code analysis tools were pro-
posed that check applications for the existence of bugs that
can lead to security vulnerabilities [4, 7].

In particular, cross site scripting (XSS) attacks have re-
ceived much interest, and both server-side and client-side
solutions were proposed. For example, in [3], the use
of a variety of software-testing techniques (including dy-
namic analysis, black-box testing, fault injection and be-
havior monitoring) are suggested to identify XSS vulner-
abilities. Alternatively, dynamic techniques on the server
side [16, 24] can be used to track non-validated user input
while it is processed by the application. This can help to de-
tect and mitigate XSS flaws. Finally, in previous work, we
implemented a client-side solution [8] to protect users from
XSS attempts. Unfortunately, these solutions cannot be ap-
plied to the problem of cross site request forgery, because
XSRF attacks are not due to input validation problems.

The general class of cross site request forgery (XSRF)
attacks was first introduced by Peter W. in a posting [23]
to the BugTraq mailing list, and has since been picked up
by web application developers [21]. However, it appears to
be a little known problem in the academic community and,
as a result, has only received little attention (which is one
of the reasons why we believe that this paper might be in-
teresting). The mitigation mechanisms for XSRF that were
proposed so far (discussed in more detail in Section 3) ei-
ther provide only partial protection (such as replacing GET
requests by POST requests, or relying on the information in
the Referer header of HTTP requests) or require significant
modifications to each individual web application that should
be protected (when embedding shared secrets into the appli-
cation’s output). Our solution, on the other hand, attempts
to retain the advantage of a solution based on shared secrets

while removing the need to modify application source code.
That is, by using a web proxy, we can transparently embed
secret tokens into the output of web applications.

In concurrent and independent work [10], an orthogonal
proxy-based solution on the client side was presented. It
also builds upon the token approach, and additionally pro-
poses the use of an outside entity for detecting IP-based au-
thentication. For cases in which JavaScript code initiates
HTTP requests, this code is altered automatically to contain
the token. Without evaluation, the reliability of this tech-
nique (which requires a certain extent of program under-
standing) is difficult to assess. Also, we believe that a man-
ual treatment of these rare cases on the server side provides
a more stable and efficient solution. Besides, due to the
usual difficulties with client-side proxies, this implementa-
tion does not support SSL connections yet.

8 Conclusion

In a cross site request forgery (XSRF) attack, the trust
of a web application in its authenticated users is exploited,
allowing an attacker to make arbitrary HTTP requests in
the victim’s name. Unfortunately, current XSRF mitiga-
tion techniques have shortcomings that limit their general
applicability. To address this problem, this paper presents
a solution that provides a completely automatic protection
from XSRF attacks. Our approach is based on a server-side
proxy that detects and prevents XSRF attacks in a way that
is transparent to users as well as to the web application it-
self.

We have successfully used our prototype to secure a
number of popular open-source web applications that were
vulnerable to XSRF. Our experimental results demonstrate
that the solution is viable, and that we can secure existing
web applications without adversely affecting their behavior.

Currently, XSRF attacks are relatively unknown to both
web developers and attackers that are on the hunt for easy
targets. However, we expect the attention paid to this class
of attacks to soon reach that of more traditional web security
problems (such as XSS or SQL injections), and we hope
that our solution will prove useful in protecting vulnerable
web applications.

Acknowledgments

This work was supported by the Austrian Science Foun-
dation (FWF) under grants P18368 (Omnis) and P18764
(Web-Defense), and by the Secure Business Austria com-
petence center.

References

[1] M. Almgren, H. Debar, and M. Dacier. A lightweight tool
for detecting web server attacks. In ISOC Symposium on
Network and Distributed Systems Security (NDSS), 2000.

[2] HTMLParser. http://htmlparser.sourceforge.
net/, 2006.

[3] Y.-W. Huang, S.-K. Huang, and T.-P. Lin. Web Application
Security Assessment by Fault Injection and Behavior Mon-
itoring. In 12th International World Wide Web Conference
(WWW), 2003.

[4] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo. Securing Web Application Code by Static Analysis
and Runtime Protection. In 13th International World Wide
Web Conference, 2004.

[5] Java Q & A - Session State in the Client Tier.
http://java.sun.com/blueprints/qanda/
client_tier/session_state.html, 2006.

[6] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing Cross
Site Request Forgery Attacks. Technical report.

[7] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper). In IEEE Symposium on Security and Privacy,
2006.

[8] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:
A Client-Side Solution for Mitigating Cross Site Scripting
Attacks. In 21st ACM Symposium on Applied Computing
(SAC), 2006.

[9] C. Kruegel and G. Vigna. Anomaly Detection of Web-based
Attacks. In 10th ACM Conference on Computer and Com-
munication Security (CCS), 2003.

[10] Martin Johns and Justus Winter. RequestRodeo:
Client Side Protection against Session Riding.
{OWASPAppSec2006Europe}, 2006.

[11] ModSecurity. http://www.modsecurity.org/.
[12] Persistent Client State: HTTP Cookies. http:

//wp.netscape.com/newsref/std/cookie\
_spec.html, 1999.

[13] PHP: Hypertext Preprocessor. http://www.php.net.
[14] PHP Manual. http://www.php.net/manual/en.
[15] PHP Session Security. http://www.

webkreator.com/php/configuration/
php-session-security.html, 2002.

[16] T. Pietraszek and C. V. Berghe. Defending against Injection
Attacks through Context-Sensitive String Evaluation. In Re-
cent Advances in Intrusion Detection (RAID), 2005.

[17] RFC 2616, Security Considerations. http://www.
w3.org/Protocols/rfc2616/rfc2616-sec15.
html, 1999.

[18] T. Schreiber. Session Riding: A Widespread Vulnerability in
Today’s Web Applications. http://www.securenet.
de/papers/Session_Riding.pdf, 2001.

[19] D. Scott and R. Sharp. Abstracting Application-Level Web
Security. In 11th International World Wide Web Conference
(WWW), 2002.

[20] C. Shiflett. Foiling Cross-Site Attacks. http://www.
securityfocus.com/archive/1/191390, 2001.

[21] C. Shiflett. PHP Security. In O’Reilly Open Source Conven-
tion, 2004.

[22] SourceForge. http://sourceforge.net/, 2006.
[23] P. W. Cross-Site Request Forgeries. http://www.

securityfocus.com/archive/1/191390, 2001.
[24] L. Wall, T. Christiansen, R. Schwartz, and S. Potter. Pro-

gramming Perl (2nd ed.). O’Reilly & Associates, Inc., 1996.

