
A Layout-Similarity-Based Approach for Detecting Phishing Pages

Angelo P. E. Rosiello∗, Engin Kirda‡, Christopher Kruegel‡, and Fabrizio Ferrandi∗

∗Politecnico di Milano
angelo@rosiello.org,ferrandi@elet.polimi.it

‡Secure Systems Lab, Technical University Vienna
{ek,chris}@seclab.tuwien.ac.at

Abstract

Phishing is a current social engineering attack that
results in online identity theft. In a phishing attack, the
attacker persuades the victim to reveal confidential in-
formation by using web site spoofing techniques. Typi-
cally, the captured information is then used to make an
illegal economic profit by purchasing goods or under-
taking online banking transactions. Although simple in
nature, because of their effectiveness, phishing attacks
still remain a great source of concern for organizations
with online customer services.

In previous work, we have developed AntiPhish, a
phishing protection system that prevents sensitive user
information from being entered on phishing sites. The
drawback is that this system requires cooperation from
the user and occasionally raises false alarms. In this
paper, we present an extension of our system (called
DOMAntiPhish) that mitigates the shortcomings of our
previous system. In particular, our novel approach
leverages layout similarity information to distinguish
between malicious and benign web pages. This makes
it possible to reduce the involvement of the user and
significantly reduces the false alarm rate. Our exper-
imental evaluation demonstrates that our solution is
feasible in practice.

1 Introduction

Online services have become important part of our
lives as they allow anytime, anywhere access to infor-
mation. Clearly, such services are not only useful for
Internet users, but they have also become indispens-
able for financial organizations because they help re-
duce operational costs. For example, there are mil-
lions of users who use the Internet for performing on-

line banking transactions. The web is convenient for
users as they are not bound to the opening hours of
banks and do not have to be physically present. Un-
fortunately, the usefulness of online services has been
overshadowed by large-scale phishing attacks launched
against Internet users. Phishing is a form of identity
theft in which a combination of social engineering and
web site spoofing techniques are used to trick a user
into revealing confidential information with economic
value.

In a typical phishing attack, a large number of
spoofed e-mails are sent to random users (i.e., anal-
ogous to spam e-mail). These e-mails are disguised
such that an unsuspecting victim is easily convinced
that the e-mail is coming from a legitimate organiza-
tion such as a bank. Typically, these e-mails requests
the victims to “update” their online banking informa-
tion. In order not to raise suspicion, the attackers have
to provide a plausible explanation for the sudden need
to update this confidential information. For example,
early phishing e-mails often contained the explanation
that the computer systems of the organization were
being restructured. Hence, customers were supposedly
being asked to “verify” that their information was cor-
rect. However, because phishing has received signif-
icant press coverage and attention in the last couple
of years, ironically, phishers are now often persuading
victims to enter their online banking credentials as a
precaution for the imminent phishing threat.

In phishing e-mails, the request to update confiden-
tial information is often accompanied by a subtle threat
in order to make the persuasion of the victim easier.
For example, the phishers may convince victims that
the failure to update their information will result in
their banking account being suspended.

Obviously, not all Internet users who receive the
phishing e-mail will be 1) naive enough to give away
their confidential information and 2) customers of the

organization in question. However, because of the very
large number of e-mails that are sent, there is a good
chance that at least some receivers will be a customer of
the targeted organization and that they will be tricked
into giving away their confidential information. In fact,
the increasing number of phishing attacks and the re-
sulting financial damages is a good sign that phishing
is currently an easy, profitable and effective attack.

According to the anti-phishing working group, the
phishing problem has grown significantly over the last
years. For example, the number of unique phishing
web sites has grown from more that 7000 in December
2005 to more than 28,000 December 2006. According
to Gartner Inc. [7], a remarkable $2.8 billion was lost
to phishers last year. Clearly, effective anti-phishing
solutions are required to mitigate phishing attacks.

In this paper, we present a novel, layout-similarity-
based approach for detecting phishing pages. Our ap-
proach is based on our previous work on mitigating
phishing attacks, AntiPhish [9], and significantly im-
proves it. We call our new approach DOMAntiPhish.

The original AntiPhish is based on the premise that
while a user may be easily fooled by URL obfuscation
or a fake domain name, a program will not. AntiPhish
is a browser plug-in that keeps track of the sensitive in-
formation that the user enters into web forms. When-
ever a piece of sensitive information that is associated
with one site is entered on another site, an alert is gen-
erated. For example, an alert is generated when An-
tiPhish detects that an online banking password (e.g., a
password associated with the domain www.bank.com)
is being typed into a text field that is not on the online
banking site.

The key disadvantage of AntiPhish is that manual
interaction is required to specify the information on
a web site that is considered sensitive. That is, the
user must manually associate a piece of sensitive in-
formation with a site (or domain). Furthermore, when
the same password is used on multiple web sites, false
alerts are generated. This happens because AntiPhish
will consider the legitimate reuse of a password on a
second site as a phishing attempt.

Our novel detection approach, DOMAntiPhish,
leverages the original idea of AntiPhish. The sys-
tem also associates sensitive information with sites and
monitors which data is sent to which domain. The key
difference happens when DOMAntiPhish detects that
a password that is associated with a certain domain
is reused on another domain. In this case, the sys-
tem does not immediately raise an alert, but compares
the layout of the current page with the page where the
sensitive information was originally entered. For this
comparison, the Document Object Model (DOM) of

the original web page and the new page are checked.
When the system determines that these pages have a
similar appearance, a phishing attack is assumed (and
the user is warned appropriately). The reason is that
a phishing page aims to mimic the original page, and
thus, their layouts are expected to be similar. When
the layouts of the two pages are different, we assume
that the password is reused on a legitimate page. The
reason is that a phishing page needs to appear similar
to the original page; otherwise, users cannot be tricked
into revealing their sensitive information.

The paper is structured as follows: The next section
reviews related work. Section 3 describes our approach
and provides details about the implementation of our
system. Section 4 presents the experimental results
that show that our approach is feasible in practice. Sec-
tion 5 discusses the limitations of our approach, while
Section 6 concludes the paper.

2 Related Work

Quite a number of anti-phishing solutions have
been proposed to date. These approaches can gen-
erally be classified into five main categories: E-
mail-based, blacklist-based, visual-clue-based, website-
feature-based, and information-flow-based approaches.

2.1 E-mail-based approaches

Some of the approaches attempt to eliminate the
phishing problem at the e-mail level by trying to pre-
vent phishing e-mails from reaching the potential vic-
tims. E-mail-based approaches typically use filters
and content analysis and are, hence, closely related to
anti-spam research. If trained regularly, for example,
Bayesian filters are actually quite effective in also inter-
cepting phishing e-mails. The downside of anti-spam
techniques is that their efficiency often depends on reg-
ular training. Furthermore, anti-spam tools are not al-
ways ubiquitously available. Also, note that no matter
how effective, anti-spam solutions are not perfect and a
some phishing e-mails may still reach potential victims.

Microsoft and Yahoo have also defined e-mail au-
thentication protocols (i.e., Sender ID [14] and Do-
mainKeys [25]) that can be use to verify if a received
e-mail is authentic. Although authentication protocols
could solve the spam problem, they are currently not
used by the majority of Internet users. Unfortunately,
the large-scale deployment of authentication protocols
would require the modification (or adaptation) of ex-
isting infrastructures.

2

2.2 Blacklist-based approaches

The most popular and widely-deployed anti-
phishing techniques are based on the use of blacklists
of phishing domains. For example, Microsoft has re-
cently integrated a blacklist-based anti-phishing solu-
tion into its Internet Explorer (IE) 7 browser. The
browser queries lists of blacklisted and whitelisted do-
mains from Microsoft servers and makes sure that the
user is not accessing any phishing sites.

Google Safe Browsing [20], analogous to IE 7,
uses blacklists of phishing URLs to identify phishing
sites. The disadvantage of the approach is that non-
blacklisted phishing sites are not recognized.

In contrast, the NetCraft tool bar [16] assesses the
phishing probability of a visited site by trying to deter-
mine how old the registered domain is. The approach
uses a database of sites that are maintained by the
company. Hence, new phishing sites that are not in the
database might not be recognized. Similarly, SiteAdvi-
sor [13] is a database-backed solution. It includes au-
tomated crawlers that browse web sites, perform tests,
and create threat ratings for each visited site. Unfor-
tunately, just like other blacklist or database-based so-
lutions, SiteAdvisor cannot recognize new threats that
have not been analyzed.

The main problem with crawling and blacklist pro-
posals is that the anti-phishing organizations find
themselves in a race against the attackers. Unfortu-
nately, there is always a window of vulnerability during
which users are susceptible to attacks. Furthermore,
the approaches are only as effective as the quality of
the lists that are maintained.

2.3 Visual-clue-based approaches

One interesting solution that has been proposed by
Dhamija et al. [3] involves the use of a so-called dy-
namic security skin on the user’s browser. The tech-
nique allows a remote server to prove its identity in a
way that is easy for humans to verify, but difficult for
phishers to spoof. The disadvantage of this approach
is that it requires effort by the user. In fact, the user
needs to be aware of the phishing threat and actively
check for signs that the site she is visiting is spoofed.
Note that in a later study [4], Dhamija et al. report
that more than 20% of the users do not take visual clues
into consideration when surfing and that visual decep-
tion attacks can fool even the most advanced users.

2.4 Website-feature-based approaches

A well-known academic solution in literature is
SpoofGuard [1, 21]. SpoofGuard looks for phish-

ing symptoms (e.g., obfuscated URLs, suspicious sen-
tences) in web pages. Similarly, Internet Explorer 7 is
reported to have simple anti-phishing functionality [12]
where the browser analyzes the HTML structure of a
web page to determine the probability that a certain
page is phishing.

The eBay tool bar [6] solution is specifically designed
for eBay and PayPal and involves the use of a so-called
“Account Guard” that changes color if the user is on a
spoofed site.

One proposed approach that is closely related to our
work is presented in Lui et al.’s short paper [24]. The
authors analyze and compare legitimate and phishing
web pages to define metrics that can be used to de-
tect a phishing page. They classify a web page as a
phishing page if its visual similarity value is above a
predefined threshold. The approach first decomposes
the web pages into salient blocks according to “visual
cues.” The visual similarity between two web pages
is then measured. A web page is considered a phish-
ing page if the similarity to the legitimate web page is
higher than a threshold. The differences to our work
are twofold. First, we analyze the layout similarity
of two web pages by comparing the HTML tags of the
pages and extracting and comparing regular subgraphs
from their DOM representations. Second, we do not
require an initial list of pages that are considered legit-
imate. Instead, our system automatically selects the
page to compare against based on the site on which a
certain piece of information was initially entered.

2.5 Information-flow-based approaches

PwdHash [19, 18] is a well-known anti-phishing solu-
tion in literature. It creates domain-specific passwords
that are rendered useless if they are submitted to an-
other domain (e.g., a password for www.hotmail.com
will be different if submitted to www.attacker.com).
In comparison, AntiPhish [9] takes a different approach
and keeps track of where sensitive information is being
submitted. That is, if it detects that confidential infor-
mation such as a password is being entered into a form
on an untrusted web site, a warning is generated and
the pending operation is canceled. The main disadvan-
tage of AntiPhish is that it requires user interaction to
specify which sensitive information should be captured
and monitored. The approach presented in this paper
significantly improves the original idea of AntiPhish by
eliminating the necessary user interaction with an ex-
tra comparison step that analyzes the DOM structure
of the pages.

3

User presses key or
pastes text into form

field

Check if the
information entered
by the user is in the

"watch" list

Is the entered
information in the

"watch" list?

Does the domain
correspond?

Trusted web
site

Different web site

Is layout
similarity

>
threshold?

Check the layout
similarity with the

trusted information

Phishing
alert

Yes No

Yes

No

No

Yes

Figure 1. Flowchart showing how the sensi-
tive information flow is controlled by the ex-
tended AntiPhish.

3 A Layout-Similarity-Based Approach

The approach presented in this paper leverages our
previous work on the anti-phishing tool AntiPhish [9].
In the original AntiPhish system, a user can manually
associate a piece of input with a certain domain. To
this end, one first enters the desired value (such as a
password) on a web page of this domain and then in-
vokes AntiPhish to store the fact that this particular
value is allowed to be sent to that domain. When the
user later enters information into any form element of
an HTML web page, the list of previously stored sensi-
tive values is checked. For each value in this list that is
identical to the one just entered by the user, the corre-
sponding domain is checked. If the current site is not
among these domains, a phishing attempt is assumed.
The reason is that sensitive information is about to be
transmitted to a domain that is not explicitly listed as
trusted. If AntiPhish detects, for example, that the
user has typed her online banking password into a text
field on a web site that is not in the online banking web
site domain, then it generates an alert and redirects to
an information page about phishing attacks.

One of the significant limitations of the original sys-
tem is that when a user is using the same piece of infor-
mation on many different web sites, AntiPhish delivers
incorrect phishing alerts (false positives). In this work,
we added another layer to the control flow already sup-

ported by AntiPhish to mitigate the problem of reuse
of sensitive information. More precisely, whenever the
system detects that a piece of information is entered on
a domain for which it has not been cleared, we do not
immediately raise an alert. Instead, we check whether
the current page is similar to the one on which the in-
formation has been entered originally. If the pages are
similar, a phishing attempt is assumed. If the pages
are different, we assume that a piece of information is
legitimately reused.

After DOMAntiPhish is installed, every time the
user successfully logs into a new web site, the browser
will automatically store the hash of the entered pass-
word, using SHA-1, along with the DOM-Tree repre-
sentation of the web site. That is, every time a pass-
word is entered, it is implicitly associated with the do-
main where it is used for the first time. This is in
contrast to the old system, where passwords have to
be explicitly and manually associated with domains.
Whenever the password is reused, a similarity check
then determines whether the reuse is legitimate (the
pages are different) or a phishing attempt (the pages
are similar).

In Figure 1, one can see the flowchart for DOMAn-
tiPhish. After the domain check fails (the “No” branch
is taken), the system computes the similarity between
the current page and the page that is stored in the
database. If this layout similarity is more than a pre-
defined threshold value, then the web site is considered
untrusted and an alert message is generated.

In the following paragraphs, we describe how we
compute the similarity of two web sites by analyzing
their DOM-Tree representations. In particular, we ex-
plore two methods: the first one is based on the simple
tags comparison of the two web sites, while the second
one is based on the identification of isomorphic sub-
trees.

3.1 DOM-Tree Extraction

The Document Object Model [23] (DOM)-Tree is an
internal representation used by browsers to represent
a web page. In order to extract the DOM-Trees of
web pages, we developed an extension (i.e., plugin) for
Firefox. An example of how a DOM-Tree is built over
an HTML web page is shown in Figure 2. For every web
site where a form is used to enter sensitive information
successfully, its DOM-Tree data structure is associated
within the ”watch” list described in [9].

4

<TABLE>
 <TBODY>
 <TR>
 <TD> Shady Grove </TD>
 <TD> Aeolian </TD>
 </TR>
 <TD> Over the river </TD>
 <TD> Albert </TD>
 </TR>
 </TBODY>
</TABLE>

<TABLE>

<TBODY>

<TR> <TR>

<TD> <TD> <TD> <TD>

Shady
Grove

Aeolian
Over
the
river

Albert

Figure 2. Example of a DOM-Tree representa-
tion.

3.2 Similarity Assessment

The layout similarity of two web sites is calculated
considering their associated DOM-Tree representation.
We start from the assumption that if two web sites
have the same DOM-Tree, then they must produce an
identical layout. It is still possible that two web sites
with two different DOM-Trees could render the same
layout, but if this is the case then:

• The administrator of the web site has done some
structural modification.

• The web site was ”copied” to look like the original
web site, i.e., we are on a phishing web site.

Only in the second case we advise the user about the
possibility of a phishing attack, since in the first case
the domain of the web site is already in the trusted list.

Given two DOM-Trees, we compare their similarity
in two different ways: 1) comparing the tags of the two
web pages; 2) extracting regular subgraphs from the
trees. Since the first approach is straight forward, in
the following, we focus on the latter technique.

If regularity exists in a graph, it must be possible
to identify a relevant number of templates and their
instances in the examined graph. Templates represent
particular subgraphs of the original graph with at least
two instances. The generic regularity extraction prob-
lem consists of identifying large existing templates with
many instances and covering the graph by the identi-
fied templates. Note that this problem was addressed
in many different research areas such as in CAD cir-
cuit design [2, 10, 11] or graph mining [5]. For our
purposes, regularity extraction consists of identifying
the templates with the maximum number of vertices
that have got at least two separate instances in the true
and the phishing DOM-Trees, allowing some structural
differences of the trees.

In the following paragraph, the regularity extraction
problem formulation will be described in detail.

3.3 Formulation and Application of the
Regularity Extraction Problem

The input for the regularity extraction problem are
two DOM-Trees T and T ′ representing the true and
the phishing web page. A tree is a graph G(V,E) in
which any two vertices are connected by exactly one
path. Trees are used as a model for representing the
structure of web sites, where the set of tags of a web
site corresponds to the set of vertices V of a tree, while
the hierarchy among the tags is modeled by the set of
edges E ⊂ V xV . DOM-Trees also present attributes
for each tag/vertex that can be considered as particular
vertices of the graph.

As stated above, each vertex of the trees represents
a tag of the web page and we attach to every vertex of
the trees a unique label to distinguish them.

In order to polynomially bind the complexity of the
templates generation phase, as also assumed by [2], we
assign for every vertex v ∈ G by a function k : E →
1, . . . , kf a unique index 1 < i < f to each outgoing
edge from nodes u1, .., uf , directly in the formulation of
the problem. In this way the permutations of outgoing
edges are not considered.

A subgraph Gi(Vi, Ei) of a graph G(V,E) is consis-
tent if and only if Vi ⊂ V , Ei ⊂ E and Gi does not
include disconnected subgraphs.

Two subgraphs Gi and Gj are equivalent if and only
if:

• they are isomorphic [8].

• types of the corresponding vertices are the same.

• indices of corresponding edges are the same.

A template represents the equivalence class of the
just described relation among two or more subgraphs.
For our purposes, we allow a weak equivalence defini-
tion only considering as very strong condition the one
that asserts the equivalence of the types of the vertices,
while adding a penalty (i.e., the similarity penalty) if
the other remaining two conditions are not completely
respected.

Now that consistency, weak equivalence, and tem-
plate notions were formalized, we define the template
generation, regularity extraction and coverage prob-
lems:

Definition 3.1 (Template Generation Problem)
Given two DOM-Trees T (V,E) and T ′(V ′, E′) find all
the equivalent or weak equivalent pairs of subgraphs in

5

T and T ′ that are not completely included in any other
subgraph of T and T ′ respectively.

Definition 3.2 (Regularity Extraction Problem)
Given two DOM-Trees T (V,E) and T ′(V ′, E′), find
the set of templates Ω to cover T and T ′, where the
number of vertices in Ti ∈ Ω are maximized and the
similarity penalty is minimized.

Definition 3.3 (Graph Covering Problem)
Given a graph G(V,E) and a set of templates Ω, find a
cover of G such that ∀ Ti ∈ Ω, the number of vertices
Ti is maximized and the total similarity penalty is
minimized.

To cover the graphs, given the set of templates, we
heuristically solve the problem by choosing at each it-
eration a template and removing its instances in the
true and phishing DOM-Trees. The template chosen
follows a main criterion: BMFF, i.e., Best-Match-Fit-
First, where at each iteration of the extracting process,
the template with the maximum number of vertices and
the minimum penalty is selected.

The layout similarity of the true and the phishing
web site is defined as the ratio of the weighted number
of matched vertices of the DOM-Trees to the number of
total vertices in the true web page, as shown in Equa-
tion 1.

Γ =
i=V∑
i=0

W (Vi)
Vi

(1)

where W is a function that assigns a similarity
weight between 0 and 1 to each vertex of the true
DOM-Tree, while Vi represents the i-th vertex of the
true DOM-Tree.

Two web pages are considered similar if and only if
the layout similarity value Γ, as defined in (1), exceeds
a certain threshold δ, i.e.:

∑i=V
i=0 W (Vi)/Vi > δ, where

the value of the threshold δ can be found empirically
and modified by the user of the application.

The procedure to automatically identify the layout
similarity between two DOM-Trees consists of three
main steps:

• Initialization.

• Templates Computation.

• Coverage.

In the following paragraphs the just above introduce
steps will be described in detail.

3.3.1 Initialization

In the initialization phase, all the possible compatible
pairs of vertices from the true and the phishing DOM-
Trees are extracted and stored in a map. The map will
contain the seeds for the next templates computation
phase. Two tags are considered compatible if and only
if they have the same tagName (i.e., the same type).

For example, if we consider the HTML source
code of the true and phishing web pages shown
in Table 3, we will obtain the following pairs of
vertices from their DOM-Trees: (HTML,HTML);
(HTML;BODY); (HTML;BR); (HTML;BR);
(BODY;HTML); (BODY,BODY); (BODY;BR);
(BODY;BR). Only two pairs are compatible:
(HTML;HTML); (BODY ;BODY). These pairs are
stored in the compatibility map. Note that this map
can contain at most O(V ∗ U) compatible pairs of
vertices, where V is the number of vertices of the first
tree and U in the second one.

Tags/vertices that do not impact on the layout of
a web site, such as META tags, are not considered
during the matching process.

3.3.2 Templates Computation

The templates computation step is based on the ap-
proach proposed in [2] to identify equivalent trees in a
graph. The algorithm starts from the seeds computed
in the initialization phase and proceeds comparing the
children vertices of each root iteratively, until compat-
ible vertices are found. It is important to notice that a
template is a representative sample of a set of isomor-
phic trees, eventually considering some penalty.

For each root with a different number of children
with respect to its counterpart in the compatibility list,
or with different types of children, or with different at-
tributes attached to the vertices, we add a similarity
penalty using the weight function W given in Equa-
tion 1. The penalty associated with each vertex and
attribute represents its importance to the total layout
similarity and is assigned empirically.

The templates computation algorithm is shown in
Table 1. Let V be the set of vertices of the true DOM-
Tree and U the set of vertices of the phishing DOM-
Tree, the computational complexity of the proposed
algorithm is O(|V |) if |V | > |U | else O(|U |), since it
consists in just visiting and comparing the vertices of
the true and of the phishing DOM-Tree.

Let us consider the example in Figure 3b
to demonstrate how the templates are com-
puted. The compatibility map (from the initial-
ization phase) contains the two pairs of seeds:
(HTML;HTML); (BODY ;BODY). For the pair

6

Templates Computation Algorithm
INPUTS: vertex v, vertex u, firstSubTree empty, secondSubTree empty
WHILE continue while ∃ equivalent subTrees branches DO
firstSubTree = getSubTree(u, firstSubTree);
secondSubTree = getSubTree(v, secondSubTree);
IF are similar(firstSubTree, secondSubTree) THEN
float penalty=compute similarity penalty();
store subTrees(u, v, firstSubTree, secondSubTree, penalty);
END IF
END WHILE

Table 1. Templates computation algorithm.

<HTML>
 <BODY>
 Hello
 </BODY>
</HTML

<HTML>

<BODY>

<HTML>
 <BODY>

Hello</BR>
 </BODY>
</HTML

Ligitimate Web Page Phishing Web Page

Ligitimate DOM Tree Phishing DOM Tree

<HTML>

<BODY>

Figure 3. HTML code of two web pages and their DOM-Tree representations.

(HTML;HTML), before considering the children,
i.e., (BODY ;BODY), we compare the attributes
of the vertices. If they are found different, an
additional penalty is added. Since no attributes
are found for the vertex < HTML >, the pair of
children (BODY;BODY) is checked and gets in-
serted into the template, since they are equivalent.
No attributes are found, therefore, the children of
(BODY ;BODY) should be compared. In this case,
for the true DOM-Tree, no children are found, while
there are two children for the phishing DOM-Tree
(i.e., < BR >, < BR >) . Thus, a similarity penalty
is added. The templates computation algorithm
proceeds comparing the second pair of vertices
< BODY,BODY > in the same way as shown for the
pair < HTML,HTML >.

All the computed templates are stored in a map
(templates map), which will be analyzed to extract the
best fitting template during the coverage step.

3.3.3 Coverage

After every pair of compatible vertices is considered,
and a tree is associated with them, the template with
the maximum number of vertices and the minimum
penalty is extracted. We called this greedy heuristic
coverage criterion Best-Match-Fit-First. The vertices
that are part of the extracted template will cover the
tags of both the true and the phishing DOM-Trees.

For example, for the DOM-Trees in Figure 3b, the
Best-Match-Fit-First heuristic criterion selects (from
the templates map computed in the templates compu-
tation phase) the tree {HTML;BODY }. This tree
completely covers the vertices of the true DOM-Tree,
while leaving uncovered two vertices in the phishing
DOM-Tree ({BR},{BR}).

The coverage phase is repeated until or no more tem-
plate is extracted or the true or phishing DOM-Tree is
completely covered.

7

Threshold SubTrees FP [%] SubTrees FN [%] Tags FP [%] Tags FN [%]
0 100 0 100 0

0,1 87.32 0 90.86 0
0,2 63.38 0 75.96 0
0,3 46.48 0 55.29 0
0,4 31.45 0 40.86 0
0,5 16.90 0 30.29 0
0,6 7.51 0,03 18.27 0
0,7 0 18,42 12.5 0
0,8 0 39,47 5.29 21.05
0,9 0 73,68 0.48 50
1 0 100 0 100

Table 2. Different threshold values versus percentage of false positive and false negative.

Simple Tags Comparison Algorithm
INPUTS: vector < tags > u, vector < tags > v

int coveredTags=0;
FOR (int i = 0; i < u.size(); i++)
FOR (int j = 0; j < v.size(); j++)
IF (u[i] == v[j]) THEN

coveredTags++;
v.erase (j);
break;

END IF
END FOR
END FOR

Table 3. Simple tags comparison algorithm.

3.4 Simple Tags Comparison Method

Another way to estimate the layout similarity be-
tween two web pages does not consider the global struc-
ture of the DOM-Trees, i.e., the subtrees, neglecting
the connections among the tags. In this case, every tag
of the original web page is compared with every tag of
the potential phishing web page. If a match is found,
then the identified pair of tags is covered. The routine
is repeated until every tag of the original or potentially
phishing web page is covered, or no more matches are
found. The algorithm is reported in Table 3.

The similarity value is computed using the function
Γ defined in Section 3.3, but in this case, the weight
function W is the constant ′1′, i.e., no penalty is con-
sidered at all. This approach is more efficient than
the one proposed in Section 3.3, but also less effective
in terms of false positives, as proved by experimental
results in Section 4.

3.5 Implementation Details

We implemented the similarity layout assessment as
a Mozilla browser extension [15] (i.e., a plug-in) using
the Mozilla XML User-Interface language (XUL) [17],
Javascript and Java. Our implementation is based on
the implementation of AntiPhish described in [9].

If the domain control in the flow-chart illustrated in
Figure 1 fails, the browser invokes a Java application
to compute the value of layout similarity. In this case,
there are two possibilities:

1. The user has the same password for two different
web sites.

2. The user is on a phishing web site.

Note that AntiPhish [9] generates an alert in both
cases described above. In contrast, our extension raises
an alert if and only if the layout similarity value exceeds
a given threshold δ. In this way, we remove the false
alarms in the (common) cases in which a user is reusing
the same password on different web sites.

As a good start value for the similarity threshold,
we chose δ = 0.5 based on our experimental results
reported in Section 4. A higher similarity threshold is
dangerous since the attacker could probably be able to
imitate the legitimate web site by changing the DOM-
Tree representation of the spoofed web site.

4 Experimental Results

We tested DOMAntiPhish on a set of phishing web
sites on phishtank.com. This well-known site collects
real phishing pages. During the similarity computa-
tion process, for the isomorphic subtrees identification
algorithm, we added a penalty of 0.3 if two correspond-
ing tags had different types or if a tag did not have

8

Figure 4. Percentage of false positive and false negative for different threshold values.

children and its matched counterpart did. If two at-
tributes of matched tags were different, a penalty of
0.1 was added. Moreover, if the attributes had differ-
ent values, then a penalty of 0.05 was added, too. The
penalty values were determined empirically by having
as objective function the minimization of false positive
and negative results for low and high threshold values
respectively.

In Table 2, we report the percentage of false posi-
tives (FP) and false negatives (FN) for different thresh-
old values obtained executing both the discussed meth-
ods (i.e., isomorphic subtrees identification and simple
tags comparison) on over two hundred different web
sites (randomly obtained using [22]). The results are
strongly correlated to the layout characterization of the
legitimate web pages. In fact, if the legitimate web
page contains many particular elements in the DOM-
Tree, it is easier to distinguish it from another web
page. Table 2 shows that by choosing δ = 0.5 as a
threshold value, all the phishing web sites are correctly
identified with an acceptable percentage of false posi-
tives (i.e., 16.90% using the isomorphic subtrees iden-
tification algorithm and 30.29% using the simple tags
comparison approach).

5 Limitations

One limitation of our current approach is that it
could be possible for attackers to use a combination
of images to create a spoofed web page that looks vi-
sually similar to a legitimate web page. Hence, the
DOM of the spoofed web page would be different and
detection would be evaded. One possibility of dealing
with this limitation could be to take a conservative ap-
proach and to tag web pages as being suspicious that
contain a large number of images or that mainly consist
of images.

Another possible problem could be DOM obfusca-
tion attempts that would make the visual look similar
to the legitimate web page while at the same time evad-
ing detection. Note, however, that our approach raises
the difficulty bar for creating phishing pages. Further-
more, one can always take a more conservative ap-
proach by reducing the phishing alert threshold. Also,
if phishers are forced to alter the look and feel of their
phishing pages, these pages will become less convincing
and more suspicious to the victims.

6 Conclusion

Phishing is an important problem that results in
identity theft. Although simple, phishing attacks are

9

highly effective and have caused billions of dollars of
damage in the last couple of years. Hence, phishing
attacks are still and important problem and solutions
are required.

A number of industrial and academic anti-phishing
solutions have been proposed to date to mitigate phish-
ing attacks. Unfortunately, all of these solutions have
important shortcomings. In this paper, we presented
an automated, client-side (i.e., browser plugin-based)
solution to protect naive, technically unsophisticated
Internet users against phishing attacks. Our approach
makes DOM-based layout comparisons of legitimate
sites with potential phishing sites to detect phishing
pages. Our experimental evaluation demonstrates that
our solution is feasible in practice.

Acknowledgements

This work was supported by the Austrian Science
Foundation (FWF) under grants P18368 (Omnis) and
P18764 (Web-Defense), and by the Secure Business
Austria competence center.

References

[1] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and
J. Mitchell. Client-side defense against web-based
identity theft. In 11th Annual Network and Distributed
System Security Symposium (NDSS ’04), San Diego,
2005.

[2] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and
R. Gupta. A general approach for regularity extrac-
tion in datapath circuits. IEEE Transactions on CAD,
18(9), 1999.

[3] R. Dhamija and J. D. Tygar. The battle against phish-
ing: Dynamic security skins. In Proceedings of the
2005 symposium on Usable privacy and security, New
York, NY, pages 77–88. ACM Press, 2005.

[4] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phish-
ing Works. In Proceedings of the Conference on Hu-
man Factors In Computing Systems (CHI) 2006, Mon-
treal, Canada. ACM Press, 2006.

[5] S. Djoko, D. J. Cook, and L. B. Holder. Analyzing
the Benefits of Domain Knowledge in Substructure
Discovery. In Proceedings of the First International
Conference on Knowledge Discovery and Data Min-
ing, pages 75–80, 1995.

[6] eBay. eBay tool bar. http://pages.ebay.com/

ebaytoolbar/, 2007.
[7] Gartner Press Release. Gartner Says Number of

Phishing E-Mails Sent to U.S. Adults eearly Doubles
in Just Two Years . http://www.gartner.com/it/

page.jsp?id=498245, 2006.
[8] F. Harary. Graph Theory. Addison-Wesley, 1969.
[9] E. Kirda and C. Kruegel. Protecting Users against

Phishing Attacks. The Computer Journal, 2006.

[10] T. Kutzenschebauch, , and L. Stok. Regularity Driven
Logic Synthesis. In Proceedings of the International
Conference on Computer-Aided Design, pages 439–
446, 2000.

[11] T. Kutzschebauch. Efficient Logic Optimization Using
Regularity Extraction. In Proceedings of the Inter-
national Conference on Computer Design, pages 487–
493, 2000.

[12] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel.
On the Effectiveness of Techniques to Detect Phish-
ing Sites. In Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA) 2007 Conference,
Lucerne, Switzerland. Springer LNCS, July 2007.

[13] McAfee. McAfee SiteAdvisor. http://www.

siteadvisor.com, 2007.
[14] Microsoft. Sender ID Home Page. http://www.

microsoft.com/mscorp/safety/technologies/

senderid/default.ms%px, 2007.
[15] Mozilla Extensions. Home Page.

http://update.mozilla.org/extensions/, 2005.
[16] NetCraft. Netcraft anti-phishing tool bar. http://

toolbar.netcraft.com, 2007.
[17] Nick Dikean. XULTU Tutorial.

http://www.xulplanet.com/, 2005.
[18] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.

Mitchell. A Browser Plug-In Solution to the Unique
Password Problem. http://crypto.stanford.edu/

PwdHash/, 2005.
[19] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.

Mitchell. Stronger Password Authentication Using
Browser Extensions. In 14th Usenix Security Sympo-
sium, 2005.

[20] F. Schneider, N. Provos, R. Moll, M. Chew, and
B. Rakowski. Phishing Protection Design Doc-
umentation. http://wiki.mozilla.org/Phishing_

Protection:_Design_Documentation, 2007.
[21] SpoofGuard. Client-side defense against web-

based identity theft. http://crypto.stanford.edu/

SpoofGuard/, 2005.
[22] URoulette. Home Page.

http://www.uroulette.com, 2007.
[23] W3C. Document Object Model. http://www.w3.

org/TR/2004/REC-DOM-Level-3-Core-20040407/

core.html, 2007.
[24] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and

X. Deng. Detection of phishing webpages based on
visual similarity. In 14th International Conference
on World Wide Web (WWW): Special Interest Tracks
and Posters, 2005.

[25] Yahoo. Yahoo! AntiSpam Resource Center. http:

//antispam.yahoo.com/domainkeys, 2007.

10

