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Intrusion detection systems (IDSs) are used to detect traces of malicious activities targeted against
the network and its resources. Anomaly-based IDSs build models of the expected behavior of
applications by analyzing events that are generated during the applications’ normal operation.
Once these models have been established, subsequent events are analyzed to identify deviations,
in the assumption that anomalies represent evidence of an attack. Host-based anomaly detection
systems often rely on system call sequences to characterize the normal behavior of applications.
Recently, it has been shown how these systems can be evaded by launching attacks that execute
legitimate system call sequences. The evasion is possible because existing techniques do not take
into account all available features of system calls. In particular, system call arguments are not
considered.

We propose two primary improvements upon existing host-based anomaly detectors. First, we
apply multiple detection models to system call arguments. Multiple models allow the arguments
of each system call invocation to be evaluated from several different perspectives. Second, we
introduce a sophisticated method of combining the anomaly scores from each model into an overall
aggregate score. The combined anomaly score determines whether an event is part of an attack.

Individual anomaly scores are often contradicting, and therefore, a simple weighted sum can-
not deliver reliable results. To address this problem, we propose a technique that uses Bayesian
networks to perform system call classification. We show that the analysis of system call argu-
ments and the use of Bayesian classification improves detection accuracy and resilience against
evasion attempts. In addition, the paper describes a tool based on our approach and provides a
quantitative evaluation of its performance in terms of both detection effectiveness and overhead.
A comparison with four related approaches is also presented.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: Intrusion Detection, Anomaly Detection, Bayesian Network,
Computer Security

1. INTRODUCTION

Intrusion detection techniques have traditionally been classified as either misuse-
based or anomaly-based. Systems that use misuse-based techniques [Paxson 1998;
Lindqvist and Porras 1999; Vigna et al. 2003] contain a number of attack descrip-
tions, or signatures, that are matched against a stream of audit data looking for
evidence that the modeled attacks are occurring. These systems are usually efficient
and generate few erroneous detections, called false positives. The main disadvan-
tage of misuse-based techniques is the fact that they can only detect those attacks
that have been modeled. That is, they cannot detect intrusions for which they do
not have a signature.

Anomaly-based techniques [Denning 1987; Ko et al. 1997; Ghosh et al. 1998]
follow an approach that is complementary to misuse detection. The detection
is based on models of normal user or application behavior, called profiles. Any
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deviation from an established profile is interpreted as being associated with an
attack. The main advantage of anomaly-based techniques is the ability to identify
previously unknown attacks. By defining an expected, normal state, any abnormal
behavior can be detected, whether it is part of the threat model or not. The
advantage of being able to detect previously unknown attacks is, however, usually
paid for with a large number of false positives.

Anomaly-based systems create models of normal behavior by analyzing different
input events from either network-based or host-based auditing facilities. Network-
based systems [Porras and Neumann 1997; Neumann and Porras 1999; Staniford
et al. 2000; Bykova et al. 2001] monitor network traffic and analyze packet headers
and payloads. Host-based systems, on the other hand, focus their analysis on user
activity or program behavior, as observed at the operating system or application
level.

In [Denning 1987], a host-based approach is described that builds profiles based
on user login times and resources accessed by users (e.g. files, programs). Simple
statistical methods are then used to determine whether the observed behavior con-
forms to the stored profile. Unfortunately, user behavior often changes suddenly
and is not easy to characterize. As a consequence, the general focus of anomaly
detection research shifted from user to program behavior.

A possible approach to create models of program behavior are system call se-
quences [Forrest 1996]. The key observation is the fact that a program has to
interact with the underlying operating system through system calls to cause per-
manent damage to the system. When an observed system call sequence deviates
from the expected behavior, an attack is assumed. An apparent weakness of this
approach is that it only takes into account the sequence of system call invoca-
tions and discards potential valuable information, such as system call arguments
and return values. In addition, only a single application programming interface
is examined (i.e., the interface that the operating system kernel exposes to user
programs). Despite these shortcomings, researchers extended Forrest’s initial work
[Warrender et al. 1999; Wagner and Dean 2001; Feng et al. 2003] and system call
sequences remain the most popular choice for analyzing program behavior.

Instead of analyzing system call sequences, this paper presents a novel anomaly
detection approach that takes into account the information contained in system
call arguments. We introduce several models that learn the characteristics of legit-
imate argument values and are capable of finding malicious instances. Based on
the proposed models, we developed a host-based intrusion detection system that
monitors running applications to identify malicious behavior. The system includes
a novel technique for performing Bayesian classification of the outputs of indi-
vidual detection models. This technique provides an improvement over the näıve
threshold-based schemes traditionally used to combine model outputs.

Because we focus on the analysis of individual system calls, our technique is more
resistant to mimicry attacks [Tan and Maxion 2002; Tan et al. 2002; Wagner and
Soto 2002] than sequence-based approaches. A mimicry attack is an attack where
the attacker can inject exploit code that imitates the system call sequence of a
legitimate program run, but performs malicious actions.

The paper is structured as follows. Section 2 discusses related work. Section 3
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presents our anomaly detection technique in detail and Section 4 describes the mod-
els we employ to perform the analysis of system call arguments. Section 5 shows
our mechanism to aggregate the outputs of individual models for the purpose of
classifying a system call as malicious or legitimate. Section 6 discusses implemen-
tation issues. Section 7 presents the experimental evaluation of the approach and
Section 8 briefly concludes.

2. RELATED WORK

Many different anomaly detection techniques have been proposed to analyze dif-
ferent event streams. Examples include data mining on network traffic [Lee et al.
1999] and statistical analysis of audit records [Javitz and Valdes 1991].

The sequence of system calls produced by applications has also been the object
of anomaly detection analysis. The techniques proposed so far fall into the areas of
specification-based and learning-based approaches.

Specification-based techniques rely on application-specific models that are either
written manually [Ko et al. 1997; Bernaschi et al. 2002; Chari and Cheng 2002]
or derived using program analysis techniques [Wagner and Dean 2001]. [Goldberg
et al. 1996] and [Provos 2003] describe systems that interactively create application-
specific profiles with the help of the user. The profiles are then used as the input to
a real-time intrusion detection system that monitors the corresponding application.
When a non-conforming system call invocation is detected, an alarm is raised.

A major problem of specification-based systems is the fact that they exhibit only
a very limited capability for generalizing from written or derived specifications. An
additional disadvantage of hand-written specification-based models is the need for
human interaction during the training phase. Although it is possible to include
predefined models for popular applications, these might not be suitable for every
user, especially when different application configurations are used. Systems that
use automatically generated specifications, on the other hand, often suffer from
significant processing overhead, caused by the complexity of the underlying models.
For example, [Wagner and Dean 2001] reports a processing overhead of more than
one hour for a single sendmail transaction.

Also, both classes of the specification-based approach often require access to the
source code of an application. Recent work in [Giffin et al. 2004], however, addresses
these drawbacks. The proposed model achieves levels of precision comparable to
those in [Wagner and Dean 2001], with acceptable levels of overhead in most cases.
Giffin’s system is furthermore able to construct application models using binary
static analysis, without access to the original source code. In general, however,
models written or computed for specification-based systems are sensitive to changes
in application source code. Such changes usually require that the specification be
re-written or re-computed.

Learning-based techniques do not rely on any a priori assumptions about the
applications. Instead, profiles are built by analyzing system call invocations during
normal execution. An example of this approach is presented by Forrest [Forrest
1996]. During the training phase, the system collects all distinct system call se-
quences of a certain specified length. During detection, all actual system call se-
quences are compared to the set of legitimate ones, raising an alarm if no match is
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found.
This approach has been further refined in [Lee et al. 1997] and [Warrender et al.

1999], where the authors study similar models and compare their effectiveness to
the original technique. However, these models do not take into account system
call arguments. This particular shortcoming exposes these systems to mimicry
attacks [Wagner and Dean 2001; Tan and Maxion 2002; Tan et al. 2002; Wagner
and Soto 2002].

This paper introduces a learning-based anomaly detection system that analyzes
the arguments of system calls. Thus, it is possible to considerably reduce the ability
of an attacker to evade detection by imitating legitimate system calls sequences.
Applying learning-based methods to system call arguments is a novel approach.
Some existing anomaly detection systems do utilize system call arguments, however
all of these systems are specification-based.

An approach to analyze program behavior by monitoring command-line argu-
ments and program variables using neural networks is presented in [Ghosh et al.
1998]. This work is similar to ours in the sense that program behavior is modeled
by analyzing argument and variable values, without taking system call sequences
into account. The work is different in the way these values are modeled. In ad-
dition, in [Ghosh et al. 1998], only one command-line argument and one program
variable are monitored, and both variables take on anomalous values during the
execution of the only attack that the authors used to evaluate the effectiveness of
their system. Our system, on the other hand, creates models for all arguments of
security-relevant system calls.

3. SYSTEM OVERVIEW

The anomaly detection approach presented in this paper is based on the application-
specific analysis of individual system calls. The input to the detection process
consists of an ordered stream S = {s1, s2, . . . } of system call invocations recorded
by the operating system. Every system call invocation s ∈ S has a return value
rs and a list of argument values < as

1, . . . , a
s
n >. Note that relationships between

system calls or sequences of invocations are not taken into account.
For each system call used by an application, a distinct profile is created. Consider,

for example, the sendmail application. The intrusion detection approach builds a
profile for each of the system calls invoked by sendmail, such as read, write, exec,
etc. Each of these profiles captures the notion of a “normal” system call invocation
by characterizing “normal” values for one or more of its arguments.

The expected “normal” values for individual arguments are determined by mod-
els. A model is a set of procedures used to evaluate a certain feature of an argument,
such as the length of a string. The argument type dictates which features can be
evaluated by models. For example, while it useful to have a model that describes
the distribution of characters for strings, this approach is not applicable to integers.

A model can operate in one of two modes, learning or detection. In learning
mode, the model is trained and the notion of “normality” is developed by inspecting
samples. Samples are values which are considered part of a regular execution of a
program and are either derived directly from a subset of the input set S (learning
on-the-fly) or provided by previous program executions (learning from a training
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set). It is important that the input to the training phase is as exhaustive and
free from anomalous events as possible, although some models exhibit a certain
degree of robustness against polluted or incomplete training data. The gathering
of quality training data is a difficult problem by itself and is not discussed in this
paper. We assume that a set of system call invocations that was created during
normal operation is available. Section 7 describes how we obtained the training
data for our experiments.

In detection mode, the task of a model is to return the probability of occurrence of
an argument value based on the model’s prior training phase. This value reflects the
likelihood that a certain feature value is observed, given the established profile. The
assumption is that feature values with a sufficiently low probability (i.e., abnormal
values) indicate a potential attack. To classify the entire system call as normal or
anomalous, the probability values of all models are aggregated. Section 5 discusses
various ways to aggregate the probabilities and thus perform a classification of
system calls as malicious or legitimate.

There are two main assumptions underlying our approach. The first is that
attacks will appear in the arguments of system calls. If an attack can be carried
out without performing system call invocations or without affecting the value of
the arguments of such invocations, then our technique will not detect it. The
second assumption is that the system call arguments used in the execution of an
attack differ substantially from the values used during the normal execution of an
application. If an attack can be carried out using system call argument values
that are indistinguishable from the values used during normal execution then the
attack will not be detected. The ability to identify abnormal values depends on the
effectiveness and sophistication of the models used to build profiles for the system
call features. Good models should make it extremely difficult to perform an attack
without being detected.

Given the two assumptions above, we developed a number of models to charac-
terize the features of system calls. We used these models to analyze attack data
that escaped detection in previous approaches, data that was used in one of the
most well-known intrusion detection evaluations [Lippmann et al. 2000], as well as
data collected on a real Internet server. In all cases, our assumptions proved to be
reasonable and the approach delivered promising results.

4. MODELS

This section introduces the models that are used to characterize system call ar-
guments and to identify anomalous occurrences. For each model, we describe the
learning phase and the detection phase. The former is the process that determines
the model parameters associated with normal behavior, while the latter is the pro-
cess of computing the probability of observing a system call argument appearing
in the input, given the previously built model. This probability is then used to
calculate an anomaly score for the argument in question.

When selecting the detection features for our models, we were naturally guided by
current attacks. We analyzed how a large set of known attacks manifest themselves
in system call arguments and selected a set of features that effectively detect these
attack manifestations. Our evaluation shows that our anomaly system, utilizing
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these models, performs better than existing approaches. Of course, it is possible
that future classes of attacks appear normal when evaluated according to these
features. This problem can only be addressed by using a range of different detection
features that focus on the structure of normal arguments as well as those that are
geared towards the characteristic properties of known attack classes. The hope
is then that future attacks lead to an observable deviation in at least one of the
modeled system call features.

4.1 String Length

Usually, system call string arguments represent canonical file names that point to
an entry in the file system. These arguments are commonly used when files are
accessed (open, stat) or executed (execve). Their length rarely exceeds a hundred
characters and they mostly consist of human-readable characters.

When malicious input is passed to programs, it is often the case that this input
also appears in arguments of system calls. Consider, for example, an attack that
exploits a format string vulnerability by inserting a string with a large number of
substrings of the form “%x” in order to cause the formatted printing procedure in
the victim application to overwrite a particular memory address. Suppose that a
format string vulnerability is present in the log function of an application. Assume
further that a failed open call is logged together with the file name. To exploit this
kind of flaw, an attacker has to carefully craft a file name that triggers the format
string vulnerability when the application attempts (and subsequently fails) to open
the corresponding file. In this case, the exploit code manifests itself as an argument
to the open call that contains a string with a length of several hundred bytes.

4.1.1 Learning. The goal of this model is to approximate the actual but un-
known distribution of the lengths of a string argument and detect instances that
significantly deviate from the observed normal behavior. Clearly, one cannot expect
that the probability density function of the underlying real distribution would follow
a smooth curve. One also has to assume that it has a large variance. Nevertheless,
the model should be able to identify obvious deviations.

The mean µ̇ and the variance σ̇2 of the real string length distribution are ap-
proximated by calculating the sample mean µ and the sample variance σ2 for the
lengths l1, l2, . . . , ln of the argument strings processed during the learning phase.

4.1.2 Detection. Given the estimated string length distribution with parameters
µ and σ2, it is the task of the detection phase to assess the regularity of an argu-
ment string with length l. The probability of l is calculated using the Chebyshev
inequality.

p(|x − µ| > t) <
σ2

t2
(1)

The Chebyshev inequality puts an upper bound on the probability that the differ-
ence between the value of a random variable x and the mean µ of its corresponding
distribution exceeds a certain threshold t (for an arbitrary distribution of the vari-
able x with variance σ2 and mean µ). Note that although this upper bound is
symmetric around the mean, the underlying distribution is not restricted (indeed,
our experimental data showed that the distribution of string lengths was not sym-
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metric). When a string with length l is evaluated, we calculate the probability that
any string is at least as long as the current one of length l. This is equivalent to the
probability of a string deviating more from the mean than the current instance. To
this end, the threshold t in Equation 1 is substituted with the difference between
the string length l of the current instance and the mean µ of the string length
distribution.

The probability value p(l) for a string with length l (given that l > µ) is then
calculated as shown below. For strings shorter than or equal to µ, p(l) = 1.

p(l : l > µ) = p(|x − µ| > |l − µ|) =
σ2

(l − µ)2
(2)

Only strings with lengths that exceed µ are assumed to be malicious. This is
reflected in our probability calculation as only the upper bound for strings that are
longer than the mean is relevant. Note that an attacker cannot disguise malicious
input by padding the string and thus increasing its length, because an increase in
length can only reduce the probability value.

We chose the Chebyshev inequality as a reasonable and efficient metric to model
decreasing probabilities for strings with lengths that are increasingly greater than
the mean. In contrast to schemes that define a valid interval (e.g., by recording all
strings encountered during the training phase), the Chebyshev inequality takes the
variance of the data into account and provides the increased resolution of gradually
decreasing probability values (instead of a simple “yes/no” decision).

4.2 String Character Distribution

The string character distribution model captures the concept of a “normal” or
“regular” string argument by looking at its character distribution. The approach is
based on the observation that strings have a regular structure, are mostly human-
readable, and almost always contain only printable characters.

A large percentage of characters in such strings are drawn from a small subset of
the 256 possible 8-bit values (mainly from letters, numbers, and a few special char-
acters). As in English text, the characters are not uniformly distributed, but occur
with different frequencies. Obviously, it cannot be expected that the frequency
distribution would be identical to standard English text. Even the frequency of
a certain character (e.g., the frequency of the letter ‘e’) varies considerably be-
tween different arguments. However, there are similarities between the character
frequencies of arguments of legitimate system calls. This becomes apparent when
the relative frequencies of all characters are sorted in descending order.

Our algorithm is based only on the frequency values themselves and does not rely
on the distributions of particular characters. That is, it does not matter whether the
character with the most occurrences is an ‘a’ or a ‘/’. In the following, the sorted,
relative character frequencies of a string are called its character distribution. For
example, consider the text string “passwd” with the corresponding ASCII values
of “112 97 115 115 119 100”. The absolute frequency distribution is 2 for 115 and
1 for the four others. When these absolute counts are transformed into sorted,
relative frequencies (i.e., the character distribution), the resulting values are 0.33,
0.17, 0.17, 0.17, 0.17 followed by 0 occurring 251 times.
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For a string argument of a legitimate system call, one can expect that the relative
frequencies slowly decrease in value (the path separator ’/’ often being the charac-
ter with the most occurrences). In case of malicious input, however, the frequencies
can drop extremely fast (because of a peak caused by a very high frequency of a
single character) or nearly not at all (in case of a nearly uniform character distri-
bution).

The character distribution of an argument that is perfectly normal (i.e., non-
anomalous) is called the argument’s idealized character distribution (ICD). The
idealized character distribution is a discrete distribution with:

ICD : D 7→ P with D = {n ∈ N|1 ≤ n ≤ 256}, P = {p ∈ R|0 ≤ p ≤ 1},
256
∑

i=1

ICD(i) = 1.0

The relative frequency of the character that occurs n-most often (1-most denot-
ing the maximum) is given as ICD(n). When the character distribution of the
sample string “passwd” is interpreted as the idealized character distribution, then
ICD(1) = 0.33 and ICD(2) through ICD(5) have a value of 0.17.

In contrast to signature-based approaches, the character distribution model has
the advantage that it cannot be evaded by certain well-known techniques to hide
malicious code inside a string. In fact, signature-based systems often contain rules
that raise an alarm when long sequences of 0x90 bytes (the nop operation in In-
tel x86-based architectures) are detected in a packet. An intruder may substitute
these sequences with instructions that have a similar behavior (e.g., add rA,rA,0,
which adds 0 to the value in register A and stores the result back to A). By do-
ing this, it is possible to prevent signature-based systems from detecting the attack.
Such sequences, nonetheless, cause a distortion of the string’s character distribution
and, therefore, the character distribution analysis still yields a high anomaly score.
In addition, characters in malicious input are sometimes disguised by xor’ing them
with constants or shifting them by a fixed value (e.g., using the ROT-13 code).
These evasion attempts do not change the resulting character distribution and the
anomaly score of the analyzed system call argument is unaffected.

4.2.1 Learning. The idealized character distribution is determined during the
training phase. First, the character distribution is stored for each observed argu-
ment string. The idealized character distribution is then approximated by calculat-
ing the average of all stored character distributions. This is done by setting ICD(n)
to the mean of the nth entry of the stored character distributions ∀n : 1 ≤ n ≤ 256.
Because all individual character distributions sum up to unity, their average will
do so as well. This ensures that the idealized character distribution is well-defined.

4.2.2 Detection. Given an idealized character distribution ICD, the task of the
detection phase is to determine the probability that the character distribution of
an argument is an actual sample drawn from its ICD. This probability, or more
precisely, the confidence in the hypothesis that the character distribution is a sample
from the idealized character distribution, is calculated using a statistical test.

This test should yield a high confidence in the correctness of the hypothesis for
normal (i.e., non-anomalous) arguments while it should reject anomalous ones. A
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number of statistical tests can be used to determine the agreement between the
idealized character distribution and the actual sample. We use a variant of the
Pearson χ2-test as a “goodness-of-fit” test [Billingsley 1995]. This test was chosen
because it is a simple and efficient way to assess the “normality” of the character
distribution.

The χ2-test requires that the function domain is divided into a small number of
intervals, or bins, and it is preferable that all bins contain at least “some” elements
(the literature considers five elements to be sufficient for most cases). As the exact
division of the domain does not significantly influence the outcome of the test,
we have chosen the six segments for the domain of ICD as follows: {[1], [2,4],
[5,7], [8,12], [13,16], [17,256]}. Although the choice of these six bins is somewhat
arbitrary, it reflects the fact that the relative frequencies are sorted in descending
order. Therefore, the values of ICD(x) are higher when x is small, and thus all
bins contain some elements with a high probability.

When a new system call argument is analyzed, the number of occurrences of
each character in the string is determined. Afterward, the values are sorted in
descending order and combined by aggregating values that belong to the same bin.
The χ2-test is then applied to calculate the probability that the given sample was
drawn from the idealized character distribution. The derived probability value p is
used as the return value for this model. When the probability that the sample is
drawn from the idealized character distribution increases, p increases as well.
The standard test requires the following steps to be performed.

(1) Calculate the observed and expected frequencies - The observed values Oi (one
for each bin) are already given. The expected number of occurrences Ei are
calculated by multiplying the relative frequencies of each of the six bins as
determined by the ICD times the length of the argument (i.e., the length of
the string).

(2) Compute the χ2-value as χ2 =
∑i<6

i=0
(Oi−Ei)

2

Ei
- note that i ranges over all six

bins.

(3) Determine the degrees of freedom and obtain the significance - The degrees of
freedom for the χ2-test are identical to the number of addends in the formula
above minus one, which yields five for the six bins used. The actual probability
p that the sample is derived from the idealized character distribution (that is,
its significance) is read from a predefined table using the χ2-value as index.

The result of this test are used directly to assign an anomaly score to the model’s
input.

4.3 Structural Inference

Often, the manifestation of an exploit is immediately visible in system call argu-
ments as unusually long strings or strings that contain repetitions of non-printable
characters. There are situations, however, when an attacker is able to craft her
attack in a manner that makes its manifestation appear more regular. For exam-
ple, non-printable characters can be replaced by groups of printable characters. In
such situations, we need a more detailed model of the system call argument. This
model can be acquired by analyzing the argument’s structure. For our purposes,
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the structure of an argument is the regular grammar that describes all of its nor-
mal, legitimate values. Structural inference is the process by which this grammar
is inferred by analyzing a number of legitimate strings during a training phase.

For example, consider the first argument of the open system call. It is a null-
terminated character string that specifies the canonical name of the file that should
be opened. Assume that during normal operation, an application only opens files
that are located in the application’s home directory and its subdirectories. For this
application, the structure of the first argument of the open system call should reflect
the fact that file names always start with the absolute path name to the program’s
home directory followed by a (possibly empty) relative path and the file name. In
addition, it can be inferred that the relative path is an alternation of slashes and
strings. If the directory names consist of lowercase characters only, this additional
constraint can be determined as well. When an attacker exploits a vulnerability in
this application and attempts to open an “anomalous” file such as “/etc/passwd”,
an alert should be raised, as this file access does not adhere to the inferred pattern.

4.3.1 Learning. When structural inference is applied to a system call argument,
the resulting grammar must be able to produce at least all training examples.
Unfortunately, there is no unique grammar that can be derived from a set of input
elements. When no negative examples are given (i.e., elements that should not be
derivable from the grammar), it is always possible to create either a grammar that
contains exactly the training data or a grammar that allows production of arbitrary
strings. The first case is a form of over-simplification, as the resulting grammar is
only able to derive the learned input without providing any level of abstraction.
This means that no new information is deduced. The second case is a form of over-
generalization because the grammar is capable of producing all possible strings, but
there is no structural information left.

The basic approach used for our structural inference is to generalize the gram-
mar as long as it seems to be “reasonable” and stop before too much structural
information is lost. The notion of “reasonable generalization” is specified with the
help of Markov models and Bayesian probability.

In a first step, we consider the set of training items as the output of a probabilistic
grammar. A probabilistic grammar is a grammar that assigns probabilities to each
of its productions (i.e., some words are more likely to be produced than others).
This fits well with the evidence gathered from system calls, as some system call
argument values appear more often, representing important information that should
not be lost in the modeling step.

A probabilistic regular grammar can be transformed into a non-deterministic
finite automaton (NFA). Each state S of the automaton has a set of nS possible
output symbols o which are emitted with a probability of pS(o). Each transition t is
marked with a probability p(t) that characterizes the likelihood that the transition
is taken. An automaton that has probabilities associated with its symbol emissions
and its transitions can also be considered a Markov model.

The output of the Markov model consists of all paths from its start state to its
terminal state. A probability value can be assigned to each output word w (that is,
a sequence of output symbols o1, o2, . . . , ok). This probability value (as shown in
Equation 3) is calculated as the sum of the probabilities of all distinct paths through
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the automaton that produce w. The probability of a single path is the product of
the probabilities of the emitted symbols pSi

(oi) and the taken transitions p(ti).
Note that the probabilities of all possible output words w sum up to 1.

p(w) = p(o1, o2, . . . , ok) =
∑

(paths p for w)

∏

(states ∈ p)

pSi
(oi) ∗ p(ti) (3)

For example, consider the NFA in Figure 1. The probabilities associated with
each transition (p(ti)) are labelled on the edges in the graph. Similarly, the prob-
abilities associated with emitting a particular symbol (pSi

(oi)) are given in each
node in the graph. To calculate the probability of the word “ab”, one has to sum
the probabilities of all possible paths that produce this string (in this case there
are two, one that follows the left arrow and one that follows the right one). The
start state emits no symbol and has a probability of 1. Following Equation 3, the
result is

p(w) = (1.0 ∗ 0.3 ∗ 0.5 ∗ 0.2 ∗ 0.5 ∗ 0.4) +

(1.0 ∗ 0.7 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0)

= 0.706 (4)

The target of the structural inference process is to find a NFA that has the
highest likelihood for the given training elements. An excellent technique to derive
a Markov model from empirical data is explained in [Stolcke and Omohundro 1993].
It uses Bayes’ theorem to state this goal as

p(Model|TrainingData) =
p(TrainingData|Model) ∗ p(Model)

p(TrainingData)
(5)

Start

a | p(a) = 0.5
b | p(b) = 0.5

0.3

a | p(a) = 1

0.7

Terminal

0.4

0.2

c | p(c) = 1

0.4

b | p(b) = 1

1.0

1.01.0

Fig. 1. Markov model example.
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The probability of the training data is considered a scaling factor in Equation 5
and it is therefore ignored. As we are interested in maximizing the a posteriori
probability (i.e., the left-hand side of the equation), we have to maximize the prod-
uct shown in the enumerator on the right-hand side of the equation. The first term,
which is the probability of the training data given the model, can be calculated for
a certain automaton by adding the probabilities calculated for each input training
element as discussed above. The second term, which is the prior probability of the
model, is not as straightforward. It has to reflect the fact that, in general, smaller
models are preferred. The model probability is calculated heuristically and takes
into account the total number N of states as well as the number of transitions tS
and emissions oS at each state S. This is justified by the fact that smaller models
can be described with fewer states as well as fewer emissions and transitions. The
actual value is derived from Equation 6 as follows:

p(Model) α
∏

S∈States

N−(
P

S∈States
tS) ∗ N−(

P

S∈States
oS) (6)

The product of the probability of the model given the data times the prior prob-
ability of the model itself (i.e., the term that is maximized in Equation 5) reflects
the intuitive idea that there is a conflict between simple models that tend to over-
generalize and models that perfectly fit the data but are too complex. Models that
are too simple have a high model probability, but the likelihood for producing the
training data is extremely low. This results in a small product when both terms
are multiplied. Models that are too complex have a high likelihood of producing
the training data (up to 1 when the model only contains the training input without
any abstractions), but the probability of the model itself is very low. By maximiz-
ing the product, the Bayesian model induction approach creates automatons that
generalize enough to reflect the general structure of the input without discarding
too much information.

The model building process starts with an automaton that exactly reflects the
input data and then gradually merges states. This state merging is continued until
the a posteriori probability no longer increases. The interested reader is referred
to [Stolcke and Omohundro 1993] and [Stolcke and Omohundro 1994] for details.

4.3.2 Detection. Once the Markov model has been built, it can be used by the
detection phase to evaluate string arguments. When the word is a valid output
from the Markov model, the model returns 1. When the value cannot be derived
from the given grammar, the model returns 0.

4.4 Token Finder

The purpose of the token finder model is to determine whether the values of a certain
system call argument are drawn from a limited set of possible alternatives (i.e.,
argument values are tokens or elements of an enumeration). An application often
passes identical values such as flags or handles to certain system call arguments.
When an attack changes the normal flow of execution and branches into maliciously
injected code, such constraints are often violated. When no enumeration can be
identified, it is assumed that the values are randomly drawn from the argument
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type’s value domain (i.e., random identifiers for every system call).

4.4.1 Learning. The classification of an argument as an enumeration or as a
random identifier is based on the observation that the number of different occur-
rences of argument values is bound by some unknown threshold t in the case of an
enumeration, while it is unrestricted in the case of random identifiers. Obviously,
t is considered to be significantly smaller than the number of distinct values of a
certain domain (such as the number of different integer values that can be repre-
sented on the underlying machine architecture). Otherwise, every argument type
could be considered a huge enumeration itself.

When the number of different argument instances grows proportional to the total
number of arguments, the use of random identifiers is indicated. If such an increase
cannot be observed and the number of different identifiers follows a standard di-
minishing growth curve [Lee et al. 2002], we assume an enumeration. In this case,
the complete set of identifiers is stored for the subsequent detection phase.

The decision between an enumeration and random identifiers can be made uti-
lizing a simple statistical test, such as the non-parametric Kolmogorov-Smirnov
variant as suggested in [Lee et al. 2002]. That paper discusses a problem similar
to our token finder for arguments of SQL queries and the solution proposed by the
authors can be applied to our model.

4.4.2 Detection. When it has been determined that the values of a system call
argument are tokens drawn from an enumeration, any new value is expected to
appear in the set of known identifiers. When it does, 1 is returned, otherwise
the model returns 0. When it is assumed that the argument values are random
identifiers, the model always returns 1.

5. SYSTEM CALL CLASSIFICATION

The task of a model mi, associated with a certain system call, is to assign an
anomaly score asi to a single argument of an invocation of the system call. This
anomaly score is calculated (and reflects) the probability of the occurrence of the
given argument value with regards to an established profile. Based on the anomaly
score outputs {asi|i = 1 . . . k} of k models M = {m1, . . . , mk} and possibly ad-
ditional information I, the decision must be made whether a certain system call
invocation is malicious (anomalous) or legitimate (normal). This decision process
is called system call classification.

Given the definitions introduced above, system call classification can be defined
more formally as a function C that, for a certain system call s with a set of ar-
guments, accepts as input the corresponding model outputs (i.e. anomaly scores)
{asi|i = 1 . . . k} and additional information I. The result of this classification func-
tion is a binary value that identifies the system call s as normal or anomalous. That
is, for a certain system call s, the function call classification function C is defined
as follows.

Cs(as1, as2, . . . , ask, I) = {normal, anomalous} (7)

In most current anomaly-based intrusion detection systems, C is a simple function
that calculates the sum of the anomaly scores asi and compares the result to a
threshold represented by I. That is, C is defined as follows.
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C(as1, as2, . . . , ask, I) =

{

sc is normal :
∑k

i=1 asi ≤ I

sc is anomalous :
∑k

i=1 asi > I
(8)

In our anomaly detection system, this simple summation scheme is replaced by
a Bayesian network (for a good introduction to Bayesian networks, refer to [Jensen
2001]). This network consists of a root node (i.e., the hypothesis node) that rep-
resents a variable with two states, namely normal and anomalous. In addition,
one child node is introduced for each model (called a model node) to capture the
model’s respective outputs, that is {asi|i = 1 . . . k}. The root node is connected to
each child node, reflecting the fact that the aggregate score is dependent upon the
individual model scores.

Depending on the domain, there might be causal dependencies between models
that require appropriate links to be introduced into the network. One example is
a positive or a negative correlation between models (i.e., one anomalous argument
makes it more or less likely that another one is also anomalous). Another example
is the situation where the output of one model indicates that the quality of a test
performed by another model is reduced.

Additional information sources might indicate that anomalous behavior is in
fact legitimate or might support the decision that observed behavior is malicious.
This could be information from other intrusion detection systems or system health
monitors (e.g., CPU utilization, memory usage, or process status).

An important piece of additional information is the confidence value associated
with each model. Depending on the system calls, a certain argument might not
be very suitable to distinguish between attacks and legitimate behavior. It might
be the case that the same values of this argument appear in both legitimate and
malicious behavior or that the variance is very high. In these situations, it is useful
to reduce the influence of the model output on the final decision.

The confidence in the output of a model is an indication of the expected accuracy
of this model. In traditional systems, the confidence is often neglected or approx-
imated with static weights. When a model is expected to produce more accurate
results, it receives a higher a priori weight. However, this is not sufficient, as the
confidence in a model can vary depending on the training data used to create the
corresponding profile. Consider, for example, the token finder model. When this
model detects an enumeration during the learning phase, its anomaly scores are
considered highly accurate. When random identifiers are assumed, the anomaly
score is not meaningful.

In the Bayesian network used in our system, each model confidence is represented
by a node that is connected to its corresponding model node. When models create
their profiles of normal behavior, the variance of the input training data is evaluated.
When the variance of the analyzed feature is high, a low confidence value is assumed.
When a small, coherent set of feature values is observed during the training, the
confidence in the correctness of the model output is high. Note that these additional
nodes require a non-näıve Bayesian network (i.e., a network with nodes that have
more than one parent node). This is because model nodes have the root node and
the corresponding confidence node as parents.
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The next section shows an example of a Bayesian network and the model depen-
dencies that have been identified for the open system call. In Section 7, experimen-
tal results are presented that show the advantage of combining model outputs using
an approach based on Bayesian networks over a simple threshold-based scheme.

6. IMPLEMENTATION

Using the models presented in the previous section, we have implemented an in-
trusion detection system (IDS) that detects anomalies in system call arguments.
The system retrieves input events (i.e., system call invocations) from an operating
system auditing facility (in the case of Linux) or from audit logs (as in Solaris’
Basic Security Module, or BSM). It then utilizes the models to compute anomaly
scores for the monitored system call arguments and finally classifies each call as
malicious or legitimate using a Bayesian network.

The intrusion detection system monitors a selected number of security-critical
applications. These are usually programs that require root privileges during exe-
cution such as server applications and setuid programs. For each program, the IDS
maintains data structures that characterize the normal profile of every monitored
system call. A system call profile consists of a set of models for each system call
argument and a function that calculates the anomaly score for input events from
the corresponding model outputs.

The architecture of our system and an overview of the relationship between ap-
plications, profiles, models and system calls are depicted in Figure 2. System calls
are made available to the system through the audit facility, and are issued to the
appropriate application-specific modules. Application modules then forward the
system call event to the profile specific to the system call in question, which in turn
maps the system call argument values to trained model instances. The figure shows
the dispatch of an open system call issued by the ftpd daemon to the corresponding
profile and the delivery of its arguments to the appropriate models.

An open-source auditing facility called Snare [Snare 2003] is used to obtain system
call records under Linux. It is implemented as a dynamically loadable kernel module
and can be installed without changing or recompiling the operating system (given
that support for loadable kernel modules is available). Auditing is introduced by
exchanging the original function pointer entries in the kernel system call table with
pointers to special wrapper functions provided by Snare. Whenever an audited
system call is invoked, the corresponding wrapper function gets called and the
system call is logged together with its arguments as a Snare record object. Then,
the control is transferred to the original system call handler. Snare records are
passed to the intrusion detection system through an entry in the /proc file system.

In addition to the Snare auditing facility, a BSM audit module has been imple-
mented to permit the analysis of system calls in the Solaris operating system. This
module converts Solaris’ BSM data into a format comparable to Snare’s and al-
lows us to process BSM audit files. This translation module allowed us to evaluate
our detection techniques with respect to the well-known MIT Lincoln Labs data
set [Lippmann et al. 2000], whose operating system audit data is only available as
BSM traces.

For performance reasons, an important decision is selecting a subset of system
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Fig. 2. Intrusion detection system architecture.

calls to be monitored by our intrusion detection system. If a larger number of
system calls are monitored, the system can base its decisions on more complete
input data. However, this might have a negative impact on performance as more
events have to be processed. In [Axelsson et al. 1998], it is argued that it is possible
to detect a large set of intrusions by observing only the execve system call and
its arguments. Starting from there, the analysis of several exploits has shown
that attacks also frequently manifest themselves in the arguments of open, setuid,
chmod, chown, and exit calls. Snare’s audit facility records a number of system
calls in addition to these, however, it was noted that these additional system calls
appear very infrequently in system call traces (e.g., mount and mkdir). We therefore
decided to include all system calls that are audited by Snare.

After the set of audited system calls had been determined, suitable models had
to be selected for their arguments. For our purposes, arguments can be divided
into four different categories: file name, user id, flags, and execution parameters.
File names are of type string and represent the canonical names of files including
their paths. User ids are of type integer and describe arguments that refer to
the various system identifiers used for users and groups. Flags are of type integer

and refer to mode identifiers or sets of flags that influence the behavior of a system
call. Execution parameters are of type string and describe the parameters of the
execve system call.

We use the string length model, the string character distribution model, and

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

the structural inference model to characterize the features of string arguments.
The string length model and the character distribution model are straightforward
to apply, while the structural inference model requires some preprocessing of the
input.

String arguments are not directly inserted into the structural inference model as
sequences of characters. Instead, every string passes through two processing steps.
First, each character is replaced by a token that corresponds to a character class.
We define the main character classes as digit, uppercase letter and lowercase

letter. Characters that do not belong to one of the aforementioned categories are
considered to be a class of their own. Then, repetitions of directly adjacent items
that belong to the same character class are fused into single occurrences of the
appropriate token. For example, consider the string “/etc/passwd”. After the first
step, both slashes would remain, but the characters of the two words are replaced
by three and five lowercase tokens, respectively. Then, adjacent, identical tokens
are merged, and the string is transformed into the sequence “slash - lowercase -
slash - lowercase”. This sequence is the input passed to the structural inference
model.

The reason for this preprocessing step is the fact that it is more efficient for
the inference process to determine general structures when the input size is small
and domain-specific knowledge has been used to perform an initial classification.
For human-readable strings, it is sensible to emphasize the appearance of special
characters and combine regular letters or digits into single structural elements.

The token finder model can be applied to string and integer arguments. How-
ever, it is mostly used for flags and user ids because values for flags and user ids are
often drawn from a limited set of tokens and deviations indicate anomalous behav-
ior. For example, consider a web server that, during normal operation, only calls
setuid with the identifier of a user with limited privileges. Then, the invocation
of setuid with a different argument, such as the root user, should be reported
as suspicious. A similar consideration also applies to the argument of the exit

call. Usually, applications either report their successful termination or return one
of a few possible errors. Unexpected deviations are usually the effect of anomalous
activity which is often caused by malicious intent.

Given the models for the different arguments of the monitored system calls, a
suitable Bayesian network can be constructed. As an example, Figure 3 shows the
structure of the Bayesian networks for the open and execve system calls. Both
system calls have two arguments. Three models (string length, string character
distribution and structural inference) are attached to the first string argument (a
file name argument in the case of the open call, and execution parameters in the case
of the execve call). The token finder model is attached to the integer argument
in the case of the open call (flags) and to another string argument in case of
the execve call (a file name argument referring to the program image executed).
The causal relationships between individual model scores that are encoded in the
network in Figure 3 are explored in detail in Section 7.2. Similar but simpler
networks are used for other monitored system calls that have only a single argument.
A different Bayesian network instance is utilized for each system call; however, most
of these networks have an identical structure.
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Fig. 3. Bayesian network for open and execve system calls.

In addition to the structure, conditional probability tables (CPTs) were speci-
fied for each node of a Bayesian network. We used domain-specific knowledge to
estimate appropriate probability values for the various tables. For each node, one
has to provide the probabilities for all states of the corresponding variable, con-
ditionally dependent on the states of all parent nodes. When a suitable structure
of the network has been chosen, these probabilities are mostly intuitive and can
be determined in a sufficiently accurate way by a domain expert. Note that we
have not tuned the CPTs in any way for our experiments. The probabilities were
selected before the evaluation began and were not modified thereafter.

The output of a model is a probability in the interval [0,1] that describes the
deviation of the system call argument from the expected normal value described
by the learned model. This probability value is mapped onto one of five possible
anomaly score states that are associated with each model node in the network. The
mapping of a continuous function output onto a number of different states is called
discretization. This process is required to keep the CPTs of the Bayesian network
manageable and to allow efficient calculations of the probabilities at the root node.
As shown in Table I, model outputs close to zero indicate normal arguments while
outputs close to one indicate anomalous ones.

Table I. Anomaly score intervals.

Probability Range Anomaly Score

[0.00, 0.50) Normal
[0.50, 0.75) Uncommon
[0.75, 0.90) Irregular
[0.90, 0.95) Suspicious
[0.95, 1.00] Very Suspicious

The Bayesian network in Figure 3 shows the two model dependencies that we
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have introduced into our intrusion detection system. One dependency connects the
node corresponding to the output of the string length model to the quality of the
character distribution (which is also influenced by the confidence in the output of
the character distribution). The mediating node Char Distribution Quality in
our network expresses the idea that the quality of the anomaly score calculated by
the character distribution is not only dependent on the a priori confidence of the
model in the quality of its learned model, but also on the length of the string that is
currently analyzed. When this string is very short, the quality of the statistical test
that assesses the character distribution is significantly reduced. This is reflected by
the conditional probability tables of the Char Distribution Quality node.

The other dependency is introduced between the nodes representing the character
distribution and the structure model. The reason is that an “abnormal” character
distribution is likely to be reflected in a structure that does not conform to the
learned grammar. This is an example of a simple positive correlation of output
values between models. In Section 7.2, a quantitative evaluation is presented that
supports our belief that these two model dependencies are in fact reasonable.

During the analysis phase, the output (i.e., anomaly scores) of the four models
and their confidences are entered as evidence into the Bayesian network. The output
of the network is computed at the Classification node. The probabilities of the
two states (normal, anomalous) associated with the output node are calculated.
When the probability of an event being anomalous is high enough, an alarm is
raised. Note that this requirement (i.e., a probability value needs to be “high
enough” to raise an alarm) could be interpreted as a threshold as well. However,
unlike simple threshold-based approaches, this probability value directly expresses
the probability that a certain event is an attack, given the specific structure of the
Bayesian network. The sum of model outputs in a threshold-based system, on the
other hand, is not necessarily proportional to the probability of an event being an
attack. It is possible, due to the assumption of independence of model outputs and
the potential lack of confidence information in these systems, that the sum of the
outputs is increasing while the true probability of an attack is, in fact, decreasing.

Both the threshold in a traditional system and the notion of a sufficiently high
probability for raising an alarm in the Bayesian approach can be utilized to tune the
sensitivity of the intrusion detection system. However, the result of the Bayesian
network directly reports the probability that an event is anomalous, given the
model outputs and the structure of the network, while a simple summation of
model outputs is only an approximation of this probability. The difference between
the exact value and the approximation is important, and accounts for a significant
number of false alarms, as shown in Section 7.

All detection models used by our system are implemented as part of a general
library. This library, called libAnomaly, provides a number of useful abstract entities
for the creation of anomaly-based intrusion detection systems and makes frequently-
used detection techniques available. The library was created in response to the
observation that almost all anomaly-based IDSs have been developed in an ad-
hoc way, with much basic functionality implemented from scratch for each new
prototype.
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7. EVALUATION

This section details the experiments undertaken to evaluate the classification ef-
fectiveness and performance characteristics of our intrusion detection system. The
goal of our system is to provide reliable classification of system call events in a
performance-critical server environment. Additionally, the validity of the Bayesian
network structure proposed for combining individual model scores is explored.

7.1 Classification Effectiveness

In this section, the ability of our intrusion detection system to correctly distinguish
attacks from events associated with normal system usage is investigated. Accuracy
of detection is especially important for anomaly-based systems as they are prone
to the generation of false alarms. Often, excessive false positives have the effect of
making the system unusable by desensitizing the system administrator. To validate
the claim that our detection technique is accurate, a number of experiments were
conducted.

For the first experiment, we ran our system on the well-known 1999 MIT Lincoln
Lab Intrusion Detection Evaluation Data [Lippmann et al. 2000]. We used data
recorded during two attack free weeks (Week 1 and Week 3) to train our models and
then performed detection on the test data that was recorded during two subsequent
weeks (Week 4 and Week 5). Week 2 was not considered for model training since
it contained attacks.

The truth file provided with the evaluation data lists all attacks carried out
against the network installation during the test period. When analyzing the attacks,
it turned out that many of them were reconnaissance attempts such as network
scans or port sweeps, which are only visible in the network dumps and do not leave
any traces in the system call logs. These network-based events cannot be detected
by our system as it focuses only on host-based events.

Another class of attacks are policy violations. These attacks do not allow an
intruder to elevate privileges directly. Instead, they help to obtain information
that is classified as secret by exploiting some system misconfiguration. This class
of attacks contains intrusions that do not exploit a weakness of the system itself,
but rather take advantage of a mistake that an administrator made in setting up the
system’s access control mechanisms. Such incidents are not visible for our system
either, as information is leaked by “normal” but unintended use of the system.

Table II. 1999 MIT Lincoln Lab evaluation results.

Application Total System Calls Attacks Identified Attacks False Alarms

eject 138 3 3 (14) 0
fdformat 139 6 6 (14) 0
ffbconfig 21 2 2 (2) 0
ps 4,949 14 14 (55) 0

ftpd 3,229 0 0 14
sendmail 71,743 0 0 8
telnetd 47,416 0 0 17

Total 127,635 25 0 39

The most interesting class of attacks are those that exploit a vulnerability in a
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remote or local service, allowing an intruder to elevate her privileges. The MIT Lin-
coln Lab data contains 25 instances of attacks that exploit buffer overflow vulnera-
bilities in four different programs. Table II summarizes the results produced by the
system for the attacks against these four programs, namely eject, ps, fdformat,
and ffbconfig. In addition, we present results for interesting daemon and setuid

programs to assess the number of false alarms. The Total column shows the sum
of all system calls that are executed by the corresponding program and analyzed
by our system. The Attacks column shows the number of attacks against the vul-
nerable programs in the data set. Identified Attacks states the number of attacks
that were successfully detected by our system and, in parentheses, the number of
corresponding system calls that were labeled as anomalous. It is very common that
a single attack results in a series of anomalous system calls. The False Alarms col-
umn shows the number of program traces that were flagged as anomalous although
these invocations are not related to any attack.

In addition to analyzing the identified attacks and false positives of our own
system, we have compared the detection accuracy to four approaches that were
previously suggested in the literature. All four techniques are based on the analysis
of system call sequences and work with unlabeled data. We selected unsupervised
intrusion detection systems that operate on unlabeled training data to allow a fair
comparison to our technique, which also does not require labeled input. Also, the
need for labeled input significantly limits the usefulness of a system because such
data is almost never available in practice.

The first system used for our experiments is the approach proposed by For-
rest [Forrest 1996], which uses a sliding window of fixed length n over the system
call traces. All sequences of length n that occur during the training period are
added to a database of normal behavior. During detection, each observed sequence
of length n is checked against this database. When the lookup fails, an alert is
raised. The second system [Kang et al. 2005] extends the system call sequences to
bags of system calls. In this representation, the last n system calls are not treated
as an ordered sequence but as a set. Because the order information between system
calls is lost, the technique produces less false positives. This is paid for by a higher
number of missed attacks. The third and fourth system [Portnoy et al. 2001] use
machine learning techniques to identify outliers in a high-dimensional vector space.
One approach is based on the k-nearest neighbor classification scheme, the other
approach uses cluster-based estimation.

Table III shows the results for the four intrusion detection approaches and our
proposed system when run on the MIT Lincoln Lab data. For each detection
approach, the false negative (FN) column shows the number of real attacks missed,
while the false positive column (FP) shows the number of traces misclassified as
attack. It can be seen that our system is the only one that detects all attacks (that
is, it has no false negatives), while it produces the least number of false positives
for most application traces.

As mentioned in Section 6, each Bayesian network requires a probability threshold
that allows it to distinguish between attacks and legitimate system calls. The
results for this and all following experiments are obtained by classifying a system
call as an attack when the root node of the Bayesian network shows more than 50%
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Table III. 1999 MIT Lincoln Lab evaluation results.

Application Sequences Syscall Bags K-Nearest Cluster Our System

FN FP FN FP FN FP FN FP FN FP

eject 1 1 1 1 2 1 0 1 0 0
fdformat 2 0 2 0 0 0 0 0 0 0
ffbconfig 0 0 0 0 0 0 0 0 0 0
ps 0 12 0 0 0 47 12 25 0 0
ftpd 0 21 0 15 0 21 0 20 0 14
sendmail 0 75 0 1 0 89 0 106 0 8
telnetd 0 99 0 99 0 21 0 6 0 17

Total 3 208 3 116 2 179 12 158 0 39

probability that the system call is anomalous. This threshold is not necessarily
optimal. Figure 4 shows the Receiver Operating Characteristic (ROC) curve of our
system for the MIT Lincoln Lab data. The ROC of a classifier shows its performance
as a trade off between selectivity and sensitivity; a curve of the false positive rate
versus the true positive rate is plotted, while a sensitivity or threshold parameter
is varied. Ideally, a classifier has a true positive rate of 1 and a false positive rate
of 0. The ROC curve for the Bayesian event classifier is plotted by varying the
probability value at the root node of the Bayesian network that is required for an
event to be reported as an attack. When a threshold of 50% is used, all attacks are
detected, but 39 system calls are incorrectly reported as malicious (resulting in a
false positive rate of 39/(127, 635− 85) ≈ 3.06 × 10−4). It can be seen in Figure 4
that a threshold exists where all attacks are detected and the false positive rate
is only slightly greater than 2 × 10−4 (resulting from only 28 incorrectly classified
system calls).
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Fig. 4. ROC comparison between Bayesian network and threshold-based system.

Figure 4 also depicts the ROC curve of a threshold-based system, which classi-
fies system calls by calculating the sum of the individual model outputs and then
comparing this sum to a threshold. The ROC curve for this classifier is determined
by varying the threshold that is compared to the sum of outputs. Although both
classification approaches receive identical input (i.e., the outputs of the individual
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models), the Bayesian system consistently performs better. The graphs show that
both classifiers output some false alarms when all attacks are correctly detected.
However, when all attacks are correctly detected (i.e., the true positive rate is 1),
the Bayesian approach only reports half as many false positives.

When analyzing the false positives raised by both classification approaches, we
observed that the Bayesian scheme always reported a subset of the false alarms
raised by the threshold-based mechanism. The false positives common to both
approaches are caused by system call invocations that have arguments that signif-
icantly deviate from all examples encountered during the training phase. This is
due to the fact that the training data was very homogeneous, leading to profiles
that were very sensitive to changes. During the detection phase, legitimate system
calls with significantly different arguments were observed. This resulted in their
incorrect classification.

The system calls that were reported as anomalous by the threshold-based ap-
proach but correctly classified as normal by the Bayesian scheme were instances
with short string arguments. As explained in Section 6, short strings can signifi-
cantly influence the quality of the character distribution model, causing it to report
incorrect anomalies. This problem is addressed by the Bayesian network using the
mediating Char Distribution Quality node (refer to Figure 3), correctly evalu-
ating these system calls as normal. Note that the shapes of the curves in Figure 4
are not a consequence of an insufficient number of data points. The horizontal and
vertical segments contain intermediate points, reflecting changes in either the false
positive or the true positive rate alone.

The second experiment was performed to evaluate the ability of our system to de-
tect a number of recent attacks. Four network daemon programs (wuftpd, Apache,
OpenSSH, and sendmail) and one setuid tool (linuxconf) were installed to simu-
late a typical Internet server. After the test environment was prepared, the intrusion
detection system was installed and trained for about one hour. During the training
period, we attempted to simulate normal usage of the system. Then, the intru-
sion detection system was switched to detection mode and more extensive tests
were conducted for five more hours. No malicious activity took place. After that,
we carried out three actual exploits against the system, one against wuftpd, one
against linuxconf and one against Apache. All of them were reliably detected. As
our system is currently not able to automatically determine when enough training
data has been processed, the duration of the training period was chosen manually.

Table IV shows, for each application, the number of analyzed system calls, the
number of detected attacks (with the number of system calls labelled anomalous by
the system are given parenthetically), and the number of false alerts. An analysis
of the reported false alarms confirmed that all alarms were indications of anoma-
lous behavior that was not encountered during the training phase. Although the
anomalous situations were not caused by malicious activity, they still represent de-
viations from the “normal” operation presented during the learning process. Many
useful generalizations took place automatically and no alerts were raised when new
files were accessed. However, the login of a completely new user or the unexpected
termination of processes were still considered anomalous and therefore flagged as
malicious.
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Table IV. Detection accuracy in controlled environment.

Application Total System Calls Attacks Identified Attacks False Alarms

wuftpd 4,887 1 1 (86) 1
Apache 17,274 1 1 (2) 0
OpenSSH 9,562 0 0 (0) 6
sendmail 15,314 0 0 (0) 5
linuxconf 4,422 1 1 (16) 3

Total 51,459 3 3 (104) 15

The 7350wu attack exploits an input validation error of wuftpd [advisory-ftpd
2000]. It was chosen because it was used by Wagner and Soto [Wagner and Soto
2002] as the basis for a mimicry attack to evade detection by current techniques
based on system call sequences. Our IDS labeled 86 system calls present in the
trace of the 7350wu attack as anomalous, all of which were directly related to the
intrusion. 84 of these anomalies were caused by arguments of the execve system
call that contained binary data and were not structurally similar to argument values
seen in the training data.

The large number of anomalous events is due to the fact that the 7350wu code
includes a feature for discovering working parameters for the exploit via a brute
force technique that repeatedly probes the FTP daemon. Not all of these 84 calls
would have been necessary, were the working parameters known in advance. How-
ever, the actual exploit needs to execute at least one of them to function properly,
and this invocation would be detected.

It should be noted that none of these anomalies would be missing were the exploit
disguised using the mimicry technique suggested by Wagner and Soto [Wagner and
Soto 2002]. Since each system call is examined independently, the insertion of in-
tervening system calls to modify their sequence does not affect the classification of
the others as anomalies. This shows that our technique is not affected by attempts
to imitate normal system call sequences. This does not imply that our IDS is im-
mune to all possible mimicry attacks (e.g., mimicry attacks that imitate legitimate
system call arguments). However, by combining our system with a sequence-based
approach, the potential attack space is reduced significantly because an attacker
would have to subvert both systems.

The attack against linuxconf exploits a recently discovered vulnerability [lin-
uxconf 2002] in the program’s handling of environment variables. When the ex-
ploit was run, the intrusion detection system identified 16 anomalous open system
calls with suspicious path arguments that caused the string length, the character
distribution and the structural inference model to report anomalous occurrences.
Another example is the structural inference model alerting on open being invoked
with a path that is used directly by the exploit and never occurs during normal
program execution.

The attack against apache exploits the KEY ARG vulnerability in OpenSSL v0.9.6d

for Apache/mod ssl. When the attack is launched, our system detects two anoma-
lous system calls. One of these calls, execve, is reported because Apache does not
create a bash process during normal operation.

The third experiment was conducted to obtain a realistic estimate of the number
of false alarms that can be expected when the system is deployed on a real-world
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server. To observe this behavior, we installed the system on our research group’s
e-mail server, trained the models for a period of two days, and then performed
detection on three important daemons (qmail, imapd, dhcpd) for the subsequent
five days. Table V shows the number of analyzed system calls as well as the num-
ber of false alarms raised during the five days, listed for each of the monitored
applications.

Table V. False alarms in real-world environment.

Application Total System Calls False Alarms

dhcpd 431 0
imapd 418,152 4
qmail 77,672 11

Total 496,255 15

7.2 Bayesian Network Validation

As mentioned in Section 6, the Bayesian networks that were used in the detector to
combine individual model scores into a single aggregate score were designed using
the domain knowledge of the authors. While the prior section demonstrates the
advantage of using decision networks over weighted summations of model scores,
a method for validating the network’s topology would empirically confirm the es-
sentially intuitive judgments concerning the causal relationships that exist between
models of system call arguments. This section proposes such a method for evaluat-
ing a chosen Bayesian network topology. A further step toward validating network
design would be to evaluate the quality of the chosen CPT values. However, this
step is reserved for future work.

Statistical correlation is a necessary but not sufficient condition for a causal rela-
tionship between two variables. Thus, if there exists a causal relationship between
two models in the proposed Bayesian network, correlation between the variables
representing the respective model scores should be observable. Conversely, if no
correlation is observed, it may be concluded that there is no causal dependency
between the models in question.

The sample correlation coefficient r between two random variables X and Y is
defined as [Devore 1982]:

r(X, Y ) =
nΣasx

i asy
i − (Σasx

i )(Σasy
i )

√

nΣ(asx
i )2 − (Σasx

i )2
√

nΣ(asy
i )2 − (Σasy

i )2
(9)

where X = asx
1 , asx

2 , . . . , asx
n is, for our purposes, the sequence of model outputs

(i.e., anomaly scores) as1, . . . , asn produced when modelX is evaluated on a se-
quence of n system call arguments. Each asx

i takes on a value in the interval (0, 1).
The sequence Y is defined for modelY similarly. The correlation coefficient r is de-
fined to take on a value in the interval [−1, 1], with r’s value commonly interpreted
as in Table VI.

The Bayesian network shown in Figure 3 was used for both the execve and open

system calls. While many causal relationships are present in the graph, we confine
our interest to causality between model scores, taken pairwise. The validation
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Table VI. Interpretation of correlation coefficient.

−1.0 ≤ r ≤ −0.8 strong negative correlation
−0.8 ≤ r ≤ −0.5 moderate negative correlation
−0.5 ≤ r ≤ 0.5 weak correlation

0.5 ≤ r ≤ 0.8 moderate positive correlation
0.8 ≤ r ≤ 1.0 strong positive correlation

experiment, thus, measures correlation for all six possible pairs of the four models
in the network. Model confidences are static throughout the detection phase in
this implementation, so computing the correlation coefficient between confidence
scores and any other sequence of values is not meaningful. The remaining arcs
in Figure 3 are between model scores and the overall classification, which have a
well-understood causal relationship.

Our goal in validating the Bayesian network topology is to determine overall to
what extent causal relationships captured in the Bayesian network are reflected in
observed score correlation across a set of evaluation traces. While it is possible to
observe score correlation between two models for one set of evaluation data and not
for another, observing correlation in multiple system calls in disparate applications
across the data set gives strong evidence for the presence of causality between model
outputs.

To run this experiment, we again selected Week 1 and 3 from the 1999 Lincoln
Lab Evaluation Data for use as a model training set. Weeks 4 and 5 were used
for evaluation. Results of the experiment, given in Table VII, show each observed
model-model score correlation coefficient for the execve and open system calls in
the eject, fdformat, and ps applications. Results from the ffbconfig application
are excluded due to the limited number of associated system calls in the data set
(21 total system call invocations in the evaluation set).

Table VII. Model ⇔ Model score correlation coefficients for execve and open system calls.

eject fdformat ps

Model Mapping execve open execve open execve open

Token Finder ⇔ String Length 0.0 0.0 0.0 0.0 0.0 0.0
Token Finder ⇔ Char Distribution 0.0 0.0 0.0 0.0 0.0 0.0
Token Finder ⇔ Structural Inf. 0.0 0.0 0.0 0.0 0.0 1.0
String Length ⇔ Structural Inf. 0.0 0.0 0.0 0.0 0.539 0.0
String Length ⇔ Char Distribution 0.0 0.0 0.0 0.524 0.535 0.696
Char Distribution ⇔ Structural Inf. 1.0 0.0 1.0 0.500 0.906 0.0

Table VII shows the correlation coefficients for all six model pairs. The entries
that correspond to the model pairs that include the token finder model (i.e., the
top half of Table VII) show strong agreement with the network in Figure 3. With
one exception, there is no observed correlation between model outputs of the token
finder model and the remaining three models. The exception is that a strong corre-
lation was observed between the token finder and structural inference model scores
in the ps application for the open system call. A closer look at the data showed that
both models accurately captured the range of normal behavior, as reflected in the

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 27

training and evaluation data sets. However, when system calls resulting from at-
tacks on ps appear, the arguments to the open system call consistently took on the
values “/tmp/foo” and 33188, respectively. Since both values registered as anoma-
lous by the respective models (structural inference and token finder), there was
perfect correlation between the two model outputs although no causal relationship
was present.

Each of the models in the pairs appearing in the bottom half of Table VII score the
same (character string) argument. In both cases – execve and open – this argument
corresponds to the filename that is being executed or opened, respectively. We note
that the three model pairs 〈 string length ⇔ structural inference 〉, 〈 string length
⇔ character distribution 〉, and 〈 character distribution ⇔ structural inference 〉
each exhibit at least moderate positive correlation in one or more applications.
Furthermore, it can be seen in Figure 3 that the model pair with a direct causal
link, 〈 character distribution ⇔ structural inference 〉, shows the strongest overall
correlation in Table VII. The model pair 〈 string length ⇔ character distribution
〉, which is separated by an intermediate variable in the Bayesian network, shows
comparatively weaker correlation. Finally, the pair 〈 string length ⇔ structural
inference 〉, separated by two intermediate variables, shows the weakest correlation.
In general, it should be noted that the degree of correspondence between observed
model score correlation and the causal links in the Bayesian network suggests that
the proposed network topology is reasonable.

7.3 System Efficiency

To quantify the overhead of our intrusion detection system, we have measured its
time and space performance characteristics.

The memory space required by each model is practically independent of the
size of the training input. Although temporary memory usage during the learning
phase can grow proportional to the size of the training data, eventually the models
abstract this information and occupy a near constant amount of space. This is re-
flected in Table VIII, which shows the memory used by our system for two different
runs after it had been trained with data from normal executions of wuftpd and
linuxconf, respectively. The results confirm that memory usage is very similar for
both test runs, although the size of the input files is different by a factor of 2.5.

Table VIII. Intrusion detection memory usage.

Application Training Data Size Memory Usage

wuftpd 37,152K 5,842K
linuxconf 14,663K 5,264K

To obtain measures that can quantify the impact of our intrusion detection system
on a heavily utilized server, we set up a small dedicated network consisting of three
PCs (1.4 GHz Pentium IV, 512 MB RAM, Linux 2.4) connected via a 100 Mbps
Ethernet. One server machine hosted the intrusion detection system and wuftpd.
The two dedicated client machines each ran k/2 simultaneous instances of FTP
client scripts. For each k, the time to complete a series of downloads was measured.
For our purposes, time to completion was measured as the point in time when the
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first client on either machine began its download to the point in time when the
last client on either machine finished. Each instance of the client script connected
to the wuftpd daemon on the server anonymously and downloaded five 100-kByte
files, two 512-kByte files, one 1-Mbyte file, one 30-Mbyte file, and one 50-Mbyte
file. The time to completion was measured for k = 2 simultaneous clients up to
k = 20 clients in steps of 2.

This experiment was run three times: once without any auditing, once with
system call auditing (i.e., Snare), and finally once with system call auditing (i.e.,
Snare) and our intrusion detection system. Figure 5 summarizes the results of this
experiment, showing the average time to completion across ten trials (variances
were less than 5% for all results).
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Fig. 5. FTP-client response times.

From this figure, it can be seen that the server performance experienced by
each client is virtually indistinguishable for all three cases. This indicates that the
number of system calls that have to be analyzed every second by the intrusion
detection system is too low to be noticeable as performance degradation. Further
analysis showed that the bottleneck in this experiment was the network. For all
numbers of clients k, the 100 Mbps network was determined to be completely
utilized. This explains the linear increase of the time to completion. The number
of monitored system calls that wuftpd issued per second was 210 on average.

To increase the system call rate to a point that would actually stress the system,
we developed a synthetic benchmark that can execute a variable number of system
calls per second at a rate that far exceeds the rate of system calls normally invoked
by server applications. By measuring the resulting CPU load for different rates
of system calls, we obtain a quantitative picture of the impact of the IDS and its
ability to operate under very high loads.

We ran the benchmark tool on an otherwise idle system for varying system call
rates three times: once without any auditing, once with system call auditing (i.e.,
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Snare), and finally once with both system call auditing (i.e., Snare) and our in-
trusion detection system. Figure 6 shows the resulting CPU load observed on the
system as an average of 10 runs.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

C
P

U
 lo

ad

System calls per second

No auditing
Snare

Snare and IDS

Fig. 6. CPU load for different system call rates.

The benchmark application used approximately 40% of the CPU on an idle sys-
tem without auditing. As the number of system calls per second increased, a neg-
ligible impact on the CPU was observed, both with auditing turned completely off
and with auditing in place. When our intrusion detection system was enabled, the
CPU load increased up to 58%, when the benchmark performed about 3000 system
calls per second. Note that this rise was caused by a nearly fifteen-fold increase of
the number of system calls per second compared to the number that needed to be
analyzed when wuftp was serving clients on a saturated fast Ethernet.

8. CONCLUSIONS

For a long time, system calls and their arguments have been known to provide ex-
tensive and high-quality audit data, which has been used by security applications
to perform signature-based intrusion detection or policy-based access control en-
forcement. However, learning-based anomaly intrusion detection has traditionally
focused only on the sequence of system call invocations. System call arguments
have been neglected because their analysis has been considered either too difficult
or too expensive computationally.

This work has demonstrated that argument models are a powerful method of
detecting attacks with a low rate of false positives. Our method of combining mul-
tiple anomaly scores using a Bayesian modeling approach also showed significant
improvement over traditional score aggregation approaches. Additionally, we per-
formed a direct comparison of our approach to four other learning-based approaches
on a well-known intrusion detection evaluation data set. This comparison showed
that our system appreciably outperforms the detection capability of these systems.
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Finally, we have shown that it is possible to analyze system call arguments with
extremely low computational and memory overheads.
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