
Automating Mimicry Attacks Using Static Binary Analysis

Christopher Kruegel and Engin Kirda
Technical University Vienna

chris@auto.tuwien.ac.at, engin@infosys.tuwien.ac.at

Darren Mutz, William Robertson, and Giovanni Vigna
Reliable Software Group, University of California, Santa Barbara

{dhm,wkr,vigna}@cs.ucsb.edu

Abstract

Intrusion detection systems that monitor sequences of sys-
tem calls have recently become more sophisticated in
defining legitimate application behavior. In particular, ad-
ditional information, such as the value of the program
counter and the configuration of the program’s call stack
at each system call, has been used to achieve better char-
acterization of program behavior. While there is com-
mon agreement that this additional information compli-
cates the task for the attacker, it is less clear to which ex-
tent an intruder is constrained.

In this paper, we present a novel technique to evade the ex-
tended detection features of state-of-the-art intrusion de-
tection systems and reduce the task of the intruder to a
traditional mimicry attack. Given a legitimate sequence of
system calls, our technique allows the attacker to execute
each system call in the correct execution context by ob-
taining and relinquishing the control of the application’s
execution flow through manipulation of code pointers.

We have developed a static analysis tool for Intel x86 bi-
naries that uses symbolic execution to automatically iden-
tify instructions that can be used to redirect control flow
and to compute the necessary modifications to the envi-
ronment of the process. We used our tool to successfully
exploit three vulnerable programs and evade detection by
existing state-of-the-art system call monitors. In addition,
we analyzed three real-world applications to verify the
general applicability of our techniques.

Keywords: Binary Analysis, Static Analysis, Symbolic
Execution, Intrusion Detection, Evasion.

1 Introduction

One of the first host-based intrusion detection systems [5]
identifies attacks by finding anomalies in the stream of
system calls issued by user programs. The technique is

based on the analysis of fixed-length sequences of sys-
tem calls. The model of legitimate program behavior is
built by observing normal system call sequences in attack-
free application runs. During detection, an alert is raised
whenever a monitored program issues a sequence of sys-
tem calls that is not part of the model.

A problem with this detection approach arises in situa-
tions where an attack does not change the sequence of sys-
tem calls. In particular, the authors of [17] observed that
the intrusion detection system can be evaded by carefully
crafting an exploit that produces a legitimate sequence of
system calls while performing malicious actions. Such
attacks were named mimicry attacks.

To limit the vulnerability of the intrusion detection sys-
tem to mimicry attacks, a number of improvements have
been proposed [4, 9, 14]. These improvements are based
on additional information that is recorded with each sys-
tem call. One example [14] of additional information is
the origin of the system call (i.e., the address of the in-
struction that invokes the system call). In this case, the
intrusion detection system examines the value of the pro-
gram counter whenever a system call is performed and
compares it to a list of legitimate “call sites.” The idea
was extended in [4] by incorporating into the analysis in-
formation about the call stack configuration at the time of
a system call invocation.

A call stack describes the current status and a partial his-
tory of program execution by analyzing the return ad-
dresses that are stored on the program’s run-time stack.
To extract the return addresses, it is necessary to unwind
the stack, frame by frame. Figure 1 shows a number of
frames on a program stack and the chain of frame (base)
pointer references that are used for stack unwinding.

Checking the program counter and the call stack at each
system call invocation serves two purposes for the de-
fender. First, the check makes sure that the system call

Function Parameters

Return Address N

Frame Pointer N

Local Variables

Function Parameters

Return Address N-1

Frame Pointer N-1

Local Variables

Current
Frame Pointer

Current
Stack Pointer

Frame
N

Frame
N-1

Figure 1: Call stack and chain of frame pointers.

was made by the application code. This thwarts all code
injection attacks in which the injected code directly in-
vokes a system call. Second, after a system call has fin-
ished, control is guaranteed to return to the original appli-
cation code. This is because the return addresses on the
stack have been previously verified by the intrusion detec-
tion system to point to valid instructions in the application
code segment. This has an important implication. Even if
the attacker can hijack control and force the application
to perform a single system call that evades detection, con-
trol would return to the original program code after this
system call has finished.

The common agreement is that by including additional
information into the model, it is significantly more diffi-
cult to mount mimicry attacks [3]. However, although ad-
ditional information undoubtedly complicates the task of
the intruder, the extent to which the attack becomes more
complicated is less clear. System-call-based intrusion de-
tection systems are not designed to prevent attacks (for
example, buffer overflows) from occurring. Instead, these
systems rely on the assumption that any activity by the
attacker appears as an anomaly that can be detected. Un-
fortunately, using these detection techniques, the attacker
is still granted full control of the running process. While
the ability to invoke system calls might be significantly
limited, arbitrary code can be executed. This includes the
possibility to access and modify all writable memory seg-
ments.

The ability to modify program variables is in itself a sig-
nificant threat. Consider, for example, an attacker that
alters variables that are subsequently used as open or
execv system call parameters. After the modification,
the attacker lets the process continue. Eventually, a sys-
tem call is invoked that uses values controlled by the at-

tacker. Because the system call is made by legitimate ap-
plication code, the intrusion remains undetected.

In some cases, however, modifying program variables is
not sufficient to compromise a process and the attacker is
required to perform system calls. Given the assumption
that an attacker has complete knowledge about the detec-
tion technique being used, it is relatively straightforward
to force the application to perform one undetected system
call. To do so, the attacker first pushes the desired system
call parameters on the stack and then jumps directly to
the address in the application program where the system
call is done. Of course, it is also possible to jump to a li-
brary function (e.g., fopen or execlp) that eventually
performs the system call. Because it is possible for the
injected code to write to the stack segment, one can inject
arbitrary stack frames and spoof any desired function call
history. Thus, even if the intrusion detection system fol-
lows the chain of function return addresses (with the help
of the stored base pointers), detection can be evaded.

The problem from the point of view of the attacker is that
after the system call finishes, the checked stack is used to
determine the return address. Therefore, program execu-
tion can only continue at a legitimate program address and
execution cannot be diverted to the attacker code. As a
consequence, there is an implicit belief that the adversary
can at most invoke a single system call. This constitutes
a severe limitation for the intruder, since most attacks re-
quire multiple system calls to succeed (for example, a call
to setuid followed by a call to execve). This limi-
tation, however, could be overcome if the attacker were
able to somehow regain control after the first system call
completed. In that case, another forged stack can be set
up to invoke the next system call. The alternation of in-
voking system calls and regaining control can be repeated
until the desired sequence of system calls (with parame-
ters chosen by the attacker) is executed.

For the purpose of this discussion, we assume that the at-
tacker has found a vulnerability in the victim program that
allows the injection of malicious code. In addition, we as-
sume that the attacker has identified a sequence of system
calls s1, s2, . . . , sn that can be invoked after a successful
exploit without triggering the intrusion detection system
(embedded within this sequence is the attack that the in-
truder actually wants to execute). Such a sequence could
be either extracted from the program model of the intru-
sion detection system or learned by observing legitimate
program executions. By repeatedly forcing the victim ap-
plication to make a single undetected system call (of a
legitimate sequence) and later regaining control, the pro-
tection mechanisms offered by additional intrusion detec-
tion features (such as checking return addresses or call
histories) are circumvented. Thus, the task of the intruder

is reduced to a traditional mimicry attack, where only the
order of system calls is of importance.

In this paper, we present techniques to regain control flow
by modifying the execution environment (i.e., modifying
the content of the data, heap, and/or stack areas) so that
the application code is forced to return to the injected at-
tack code at some point after a system call. To this end, we
have developed a static analysis tool that performs sym-
bolic execution of x86 binaries to automatically determine
instructions that can be exploited to regain control. Upon
detection of exploitable instructions, the code necessary
to appropriately set up the execution environment is gen-
erated. Using our tool, we successfully exploited sample
applications protected by the intrusion detection systems
presented in [4] and [14], and evaded their detection.

The paper makes the following primary contributions:

• We describe novel attack techniques against two
well-known intrusion detection systems [4, 14] that
evade the extended detection features and reduce the
task of the intruder to a traditional mimicry attack.

• We implemented a tool that allows the automated
application of our techniques by statically analyzing
the victim binary.

• We present experiments where our tool was used
to generate exploits against vulnerable sample pro-
grams. In addition, our system was run on real-world
applications to demonstrate the practical applicabil-
ity of our techniques.

Although our main contributions focus on the automated
evasion of two specific intrusion detection systems, an im-
portant point of our work is to demonstrate that, in gen-
eral, allowing attackers to execute arbitrary code can have
severe security implications.

The paper is structured as follows. In Section 2, we re-
view related work on systems that perform intrusion de-
tection using system calls. In Section 3, we outline our
techniques to regain control flow. Section 4 provides an
in-depth description of our proposed static analysis and
symbolic execution techniques. In Section 5, we demon-
strate that our tool can be used to successfully exploit
sample programs without raising alarms. In addition, the
system is run on three real-world applications to under-
line the general applicability of our approach. Finally, in
Section 6, we briefly conclude and outline future work.

2 Related Work

System calls have been used extensively to characterize
the normal behavior of applications. In [7], a classifi-
cation is presented that divides system-call-based intru-
sion detection systems into three categories: “black-box”,
“gray-box”, and “white-box”. The classification is based
on the source of information that is used to build the sys-
tem call profiles and to monitor the running processes.

Black-box approaches only analyze the system calls in-
voked by the monitored application without considering
any additional information. The system presented in [5],
which is based on the analysis of fixed-length sequences
of system calls, falls into this category. Alternative data
models for this approach were presented in [18], while
the work in [19] lifted the restriction of fixed-length se-
quences and proposed the use of variable-length patterns.
However, the basic means of detection have remained the
same.

Gray-box techniques extend the black-box approaches by
including additional run-time information about the pro-
cess’ execution state. This includes the origin of the sys-
tem call [14] and the call stack [4], as described in the
previous section. Another system that uses context in-
formation was introduced in [6]. Here, the call stack is
used to generate an execution graph that corresponds to
the maximal subset of the program control flow graph that
one can construct given the observed runs of the program.

White-box techniques extract information directly from
the monitored program. Systems in this class perform
static analysis of the application’s source code or binary
image. In [16], legal system call sequences are rep-
resented by a state machine that is extracted from the
control-flow graph of the application. Although the sys-
tem is guaranteed to raise no false positives, it is vulner-
able to traditional mimicry attacks. Another problem of
this system is its run-time overhead, which turns out to
be prohibitively high for some programs, reaching sev-
eral minutes per transaction. This problem was addressed
in [8], using several optimizations (e.g., the insertion of
“null” system calls), and later in [9], where a Dyck model
is used. For this approach, additional system calls need to
be inserted, which is implemented via binary rewriting.

An approach similar to the one described in the previous
paragraph was introduced in [11]. In this work, system
call inlining and “notify” calls are introduced instead of
the “null” system calls. Also, source code is analyzed in-
stead of binaries. Another system that uses static analysis
to extract an automaton with call stack information was
presented in [3]. The work in this paper is based on the
gray-box technique introduced in [4]. In [20], waypoints

are inserted into function prologues and epilogues to re-
strict the types of system calls that they can invoke.

Black-box and gray-box techniques can only identify
anomalous program behavior on the basis of the previous
execution of attack-free runs. Therefore, it is possible that
incomplete training data or imprecise modeling lead to
false positives. White-box approaches, on the other hand,
extract their models directly from the application code.
Thus, assuming that the program does not modify itself,
anomalies are a definite indication of an attack. On the
downside, white-box techniques often require the analy-
sis of source code, which is impossible in cases where the
code is not available. Moreover, an exhaustive static anal-
ysis of binaries is often prohibitively complex [6].

This paper introduces attacks against two gray-box sys-
tems. Thus, related work on attacking system-call-based
detection approaches is relevant. As previously men-
tioned, mimicry attacks against traditional black-box de-
signs were introduced in [17]. A similar attack is dis-
cussed in [15], which is based on modifying the exploit
code so that system calls are issued in a legitimate order.
In [7], an attack was presented that targets gray-box intru-
sion detection systems that use program counter and call
stack information. This attack is similar to ours in that it is
proposed to set up of a fake environment to regain control
after the invocation of a system call. The differences with
respect to the attack techniques described in this paper are
twofold. First, the authors mention only one technique to
regain control of the application’s executionflow. Second,
the process of regaining control is performed completely
manually. In fact, although the possibility to regain con-
trol flow by having the program overwrite a return address
on the stack is discussed, no example is provided that uses
this technique. In contrast, this paper demonstrates that
attacks of this nature can be successfully automated using
static analysis of binary code.

3 Regaining Control Flow

In this section, we discuss possibilities to regain control
after the attacker has returned control to the application
(e.g., to perform a system call). To regain control, the
attacker has the option of preparing the execution envi-
ronment (i.e., modifying the content of the data, heap,
and stack areas) so that the application code is forced to
return to the attacker code at some point after the sys-
tem call. The task can be more formally described as
follows: Given a program p, an address s, and an ad-
dress t, find a configuration C such that, when p is exe-
cuted starting from address s, control flow will eventually
reach the target address t. For our purposes, a configura-
tion C comprises all values that the attacker can modify.

This includes the contents of all processor registers and
all writable memory regions (in particular, the stack, the
heap, and the data segment). However, the attacker can-
not tamper with write-protected segments such as code
segments or read-only data.

Regaining control flow usually requires that a code
pointer is modified appropriately. Two prominent classes
of code pointers that an attacker can target are function
pointers and stack return addresses. Other exploitable
code pointers include longjmp buffers.

A function pointer can be modified directly by code in-
jected by the attacker before control is returned to the ap-
plication to make a system call. Should the application
later use this function pointer, control is returned to the at-
tacker code. This paper focuses on binary code compiled
from C source code, hence we analyze where function
pointers can appear in such executables. One instance is
when the application developer explicitly declares pointer
variables to functions at the C language level; whenever
a function pointer is used by the application, control can
be recovered by changing the pointer variable to contain
the address of malicious code. However, although func-
tion pointers are a commonly used feature in many C
programs, there might not be sufficient instances of such
function invocations to successfully perform a complete
exploit.

A circumstance in which function pointers are used more
frequently is the invocation of shared library functions by
dynamically linked ELF (executable and linking format)
binaries. When creating dynamically linked executables,
a special section (called procedure linkage table – PLT) is
created. The PLT is used as an indirect invocation method
for calls to globally defined functions. This mechanism
allows for the delayed binding of a call to a globally de-
fined function. At a high level, this means that the PLT
stores the addresses of shared library functions. When-
ever a shared function is invoked, an indirect jump is per-
formed to the corresponding address. This provides the
attacker with the opportunity to modify the address of a
library call in the PLT to point to attacker code. Thus,
whenever a library function call is made, the intruder can
regain control.

The redirection of shared library calls is a very effective
method of regaining control, especially when one consid-
ers the fact that applications usually do not invoke system
calls directly. Instead, almost all system calls are invoked
through shared library functions. Thus, it is very proba-
ble that an application executes a call to a shared function
before every system call. However, this technique is only
applicable to dynamically linked binaries. For statically

linked binaries, alternative mechanisms to recover control
flow must be found.

One such mechanism is the modification of the function
return addresses on the stack. Unfortunately (from the
point of view of the attacker), these addresses cannot be
directly overwritten by the malicious code. The reason, as
mentioned previously, is that these addresses are checked
at every system call. Thus, it is necessary to force the ap-
plication to overwrite the return address after the attacker
has relinquished control (and the first system call has fin-
ished). Also, because the stack is analyzed at every sys-
tem call, no further system calls may be invoked between
the time when the return address is modified and the time
when this forged address is used in the function epilogue
(i.e., by the ret instruction).

In principle, every application instruction that writes a
data value to memory can be potentially used to modify
a function return address. In the Intel x86 instruction set,
there is no explicit store instruction. Being based on a
CISC architecture, many instructions can specify a mem-
ory location as the destination where the result of an oper-
ation is stored. The most prominent family of instructions
that write data to memory are the data transfer instructions
(using the mov mnemonic).

int global;

void f()
{
 global = 0;
}

movl $0x0,0x8049578

(a) Direct variable access

int global;

void f()
{
 int *p = &global;

 *p = 0;
}

movl $0x8049578,0xfffffffc(%ebp)
mov 0xfffffffc(%ebp),%eax
movl $0x0,(%eax)

(b) Variable access via pointer

int index;
int array[];

void f()
{
 array[index] = 0;
}

mov 0x80495a0,%eax
movl $0x0,0x80495c0(,%eax,4)

(c) Array access

Figure 2: Unsuitable store instructions.

Of course, not all instructions that write to memory can
be actually used to alter a return address. For example,
consider the C code fragments and their corresponding
machine instructions shown in Figure 2. In the first ex-
ample (a), the instruction writes to a particular address
(0x8049578, the address of the variable global), which
is specified by an immediate operand of the instruction.
This store instruction clearly cannot be forced to over-
write an arbitrary memory address. In the other two cases
((b) and (c)), the instruction writes to a location whose ad-
dress is determined (or influenced) by a value in a regis-
ter. However, in example (b), the involved register %eax
has been previously loaded with a constant value (again
the address of the variable global) that cannot be influ-
enced by the intruder. Finally, even if the attacker can
choose the destination address of the store instruction, it
is also necessary to be able to control the content that is
written to this address. In example (c), the attacker can
change the content of the index variable before returning
control to the application. When the application then per-
forms the array access using the modified index variable,
which is loaded into register %eax, the attacker can write
to an (almost) arbitrary location on the stack. However,
the constant value 0 is written to this address, making the
instruction not suitable to set a return address to the mali-
cious code.

The examples above highlight the fact that even if appli-
cation code contains many store instructions, only a frac-
tion of them might be suitable to modify return addresses.
Even if the original program contains assignments that
dereference pointers (or access array elements), it might
not be possible to control both the destination of the store
instruction and its content. The possibility of using an
assignment operation through a pointer to modify the re-
turn address on the stack was previously discussed in [7].
However, the authors did not address the problem that an
assignment might not be suitable to perform the actual
overwrite. Moreover, if a suitable instruction is found,
preparing the environment is often not a trivial task. Con-
sider a situation where an application first performs a
number of operations on a set of variables and later stores
only the result. In this case, the attacker has to set up the
environment so that the result of these operations exactly
correspond to the desired value. In addition, one has to
consider the effects of modifications to the environment
on the control flow of the application.

A simple example is shown in Figure 3. Here, the attacker
has to modify the variable index to point to the (return) ad-
dress on the stack that should be overwritten. The value
that is written to this location (i.e., the new return address)
is determined by calculating the sum of two variables a
and b. Also, one has to ensure that a > 0 because other-
wise the assignment instruction would not be executed.

int index, a, b;
int array[];

void f()
{
 if (a > 0)
 array[index] = a + b;
}

(a) Possible overwrite

Figure 3: Possibly vulnerable code.

The presented examples serve only as an indication of the
challenges that an attacker faces when attempting to man-
ually comprehend and follow different threads of execu-
tion through a binary program. To perform a successful
attack, it is necessary to take into account the effects of
operations on the initial environment and consider differ-
ent paths of execution (including loops). Also, one has
to find suitable store instructions or indirect function calls
that can be exploited to recover control. As a result, one
might argue that it is too difficult for an attacker to repeat-
edly make system calls and recover control, which is nec-
essary to perform a successful compromise. In the next
section, we show that these difficulties can be overcome.

4 Symbolic Execution

This section describes in detail the static analysis tech-
niques we use to identify and exploit possibilities for re-
gaining control after the invocation of a system call. As
mentioned previously, control can be regained when a
configurationC is found such that control flow will even-
tually reach the target address t when program p is exe-
cuted starting from address s.

Additional constraints are required to make sure that a
program execution does not violate the application model
created by the intrusion detection system. In particular,
system calls may only be invoked in a sequence that is
considered legitimate by the intrusion detection system.
Also, whenever a system call is invoked, the chain of
function return addresses on the stack has to be valid.
In our current implementation, we enforce these restric-
tions simply by requiring that the target address tmust be
reached from s without making any intermediate system
calls. In this way, we ensure that no checks are made by
the intrusion detection system before the attacker gets a
chance to execute her code. At this point, it is straightfor-
ward to have the attack code rearrange the stack to pro-
duce a valid configuration (correct chain of function re-
turn addresses) and to make system calls in the correct
order.

The key approach that we use to find a configuration C
for a program p and the two addresses s and t is sym-
bolic execution [10]. Symbolic execution is a technique
that interpretatively executes a program, using symbolic
expressions instead of real values as input. In our case,
we are less concerned about the input to the program. In-
stead, we treat all values that can be modified by the at-
tacker as variables. That is, the execution environment of
the program (data, stack, and heap) is treated as the vari-
able input to the code. Beginning from the start address
s, a symbolic execution engine interprets the sequence of
machine instructions.

To perform symbolic execution of machine instructions
(in our case, Intel x86 operations), it is necessary to ex-
tend the semantics of these instructions so that operands
are not limited to real data objects but can also be sym-
bolic expressions. The normal execution semantics of In-
tel x86 assembly code describes how data objects are rep-
resented, how statements and operations manipulate these
data objects, and how control flows through the state-
ments of a program. For symbolic execution, the defi-
nitions for the basic operators of the language have to be
extended to accept symbolic operands and produce sym-
bolic formulas as output.

4.1 Execution State

We define the execution state S of program p as a snap-
shot of the content of the processor registers (except the
program counter) and all valid memory locations at a par-
ticular instruction of p, which is denoted by the program
counter. Although it would be possible to treat the pro-
gram counter like any other register, it is more intuitive to
handle the program counter separately and to require that
it contains a concrete value (i.e., it points to a certain in-
struction). The content of all other registers and memory
locations can be described by symbolic expressions.

Before symbolic execution starts from address s, the
execution state S is initialized by assigning symbolic
variables to all processor registers (except the program
counter) and memory locations in writable segments.
Thus, whenever a processor register or a memory location
is read for the first time, without any previous assignment
to it, a new symbol is supplied from the list of variables
{υl, υ2, υ3, . . .}. Note that this is the only time when sym-
bolic data objects are introduced.

In our current system, we do not support floating point
data objects and operations, so all symbols (variables)
represent integer values. Symbolic expressions are linear
combinations of these symbols (i.e., integer polynomials
over the symbols). A symbolic expression can be written
as cn ∗ υn + cn−1 ∗ υn−1 + . . . + c1 ∗ υ1 + c0 where the

eax: v0
edx: v1

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

PC: 8048364

eax: v0
edx: v2

8049588: (j) : v2
804958c: (k): v3
8049590: (i) : v4

PC: 804836a

eax: v2
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

PC: 804836c

eax: 2*v2
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

PC: 804836e

eax: 3*v2
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

PC: 8048370

eax: 3*v2+v3
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : v4

PC: 8048376

eax: 3*v2+v3
edx: v2

8049588 (j) : v2
804958c (k): v3
8049590 (i) : 3*v2+v3

PC: 804837b

 8048364: mov 0x8049588,%edx
 804836a: mov %edx,%eax
 804836c: add %eax,%eax
 804836e: add %edx,%eax
 8048370: add 0x804958c,%eax
 8048376: mov %eax,0x8049590
 804837b:

int i, j, k;

void f()
{
 i = 3*j + k;
}

Step 1 Step 2

Step 3 Step 4 Step 5 Step 6 Step 7

Figure 4: Symbolic execution.

ci are constants. In addition, there is a special symbol ⊥
that denotes that no information is known about the con-
tent of a register or a memory location. Note that this
is very different from a symbolic expression. Although
there is no concrete value known for a symbolic expres-
sion, its value can be evaluated when concrete values are
supplied for the initial execution state. For the symbol
⊥, nothing can be asserted, even when the initial state is
completely defined.

By allowing program variables to assume integer polyno-
mials over the symbols υi, the symbolic execution of as-
signment statements follows naturally. The expression on
the right-hand side of the statement is evaluated, substitut-
ing symbolic expressions for source registers or memory
locations. The result is another symbolic expression (an
integer is the trivial case) that represents the new value of
the left-hand side of the assignment statement. Because
symbolic expressions are integer polynomials, it is pos-
sible to evaluate addition and subtraction of two arbitrary
expressions. Also, it is possible to multiply or shift a sym-
bolic expression by a constant value. Other instructions,
such as the multiplication of two symbolic variables or a
logic operation (e.g., and, or), result in the assignment
of the symbol ⊥ to the destination. This is because the
result of these operations cannot (always) be represented
as integer polynomial. The reason for limiting symbolic
formulas to linear expressions will become clear in Sec-
tion 4.3.

Whenever an instruction is executed, the execution state is
changed. As mentioned previously, in case of an assign-
ment, the content of the destination operand is replaced
by the right-hand side of the statement. In addition, the
program counter is advanced. In the case of an instruction
that does not change the control flow of a program (i.e.,
an instruction that is not a jump or a conditional branch),

the program counter is simply advanced to the next in-
struction. Also, an unconditional jump to a certain label
(instruction) is performed exactly as in normal execution
by transferring control from the current statement to the
statement associated with the corresponding label.

Figure 4 shows the symbolic execution of a sequence of
instructions. In addition to the x86 machine instructions,
a corresponding fragment of C source code is shown. For
each step of the symbolic execution, the relevant parts
of the execution state are presented. Changes between
execution states are shown in bold face. Note that the
compiler (gcc 3.3) converted the multiplication in the
C program into an equivalent series of add machine in-
structions.

4.2 Conditional Branches and Loops

To handle conditional branches, the execution state has
to be extended to include a set of constraints, called the
path constraints. In principle, a path constraint relates a
symbolic expressionL to a constant. This can be used, for
example, to specify that the content of a register has to be
equal to 0. More formally, a path constraint is a boolean
expression of the form L ≥ 0 or L = 0, in which L is an
integer polynomial over the symbols υ i. The set of path
constraints forms a linear constraint system.

The symbolic execution of a conditional branch statement
starts in a fashion similar to its normal execution, by eval-
uating the associated Boolean expression. The evalua-
tion is done by replacing the operands with their corre-
sponding symbolic expressions. Then, the inequality (or
equality) is transformed and converted into the standard
form introduced above. Let the resulting path constraint
be called q.

eax: v0
edx: v1

8049588 (j): v2
804958c (i): v3

PC: 804836b

Path Condition:

 8048364: cmpl $0x2a,0x804958c
 804836b: jle 8048379
 804836d: movl $0x1,0x8049588
 8048377: jmp 8048383
 8048379: movl $0x0,0x8049588
 8048383:

int i, j;

void f()
{
 if (i > 42)
 j = 1;
 else
 j = 0;
}

 Step 1

eax: v0
edx: v1

8049588 (j): v2
804958c (i): v3

PC: 804836d

Path Condition:
(v3 - 42) > 0

Step 2a.

eax: v0
edx: v1

8049588 (j): 1
804958c (i): v3

PC: 8048377

Path Condition:
(v3 - 42) > 0

Step 3a.

eax: v0
edx: v1

8049588 (j): 1
804958c (i): v3

PC: 8048383

Path Condition:
(v3 - 42) > 0

Step 4a.

eax: v0
edx: v1

8049588 (j): v2
804958c (i): v3

PC: 8048379

Path Condition:
(v3 - 42) ≤ 0

Step 2b.

eax: v0
edx: v1

8049588 (j): 0
804958c (i): v3

PC: 8048383

Path Condition:
(v3 - 42) ≤ 0

Step 3b.

Execution thread forks
else continuation

then continuation

Figure 5: Handling conditional branches during symbolic execution.

To continue symbolic execution, both branches of the
control path need to be explored. The symbolic execution
forks into two “parallel” execution threads: one thread
follows the then alternative, the other one follows the
else alternative. Both execution threads assume the ex-
ecution state which existed immediately before the condi-
tional statement but proceed independently thereafter. Be-
cause the then alternative is only chosen if the conditional
branch is taken, the corresponding path constraint q must
be true. Therefore, we add q to the set of path constraints
of this execution thread. The situation is reversed for the
else alternative. In this case, the branch is not taken and q
must be false. Thus, ¬q is added to the path constraints in
this execution.

After q (or ¬q) is added to a set of path constraints,
the corresponding linear constraint system is immediately
checked for satisfiability. When the set of path con-
straints has no solution, this implies that, independent of
the choice of values for the initial configuration C, this
path of execution can never occur. This allows us to im-
mediately terminate impossible execution threads.

Each fork of execution at a conditional statement con-
tributes a condition over the variables υ i that must hold
in this particular execution thread. Thus, the set of path
constraints determines which conditions the initial execu-
tion state must satisfy in order for an execution to follow
the particular associated path. Each symbolic execution
begins with an empty set of path constraints. As assump-
tions about the variables are made (in order to choose be-
tween alternative paths through the program as presented
by conditional statements), those assumptions are added

to the set. An example of a fork into two symbolic execu-
tion threads as the result of an if-statement and the cor-
responding path constraints are shown in Figure 5. Note
that the if-statement was translated into two machine in-
structions. Thus, special code is required to extract the
condition on which a branch statement depends.

Because a symbolic execution thread forks into two
threads at each conditional branch statement, loops rep-
resent a problem. In particular, we have to make sure that
execution threads “make progress” to achieve our objec-
tive of eventually reaching the target address t. The prob-
lem is addressed by requiring that a thread passes through
the same loop at most three times. Before an execution
thread enters the same loop for the forth time, its execu-
tion is halted. Then, the effect of an arbitrary number of
iterations of this loop on the execution state is approxi-
mated. This approximation is a standard static analysis
technique [2, 13] that aims at determining value ranges
for the variables that are modified in the loop body. Since
the problem of finding exact ranges and relationships be-
tween variables is undecidable in the general case, the ap-
proximation naturally involves a certain loss of precision.
After the effect of the loop on the execution thread was
approximated, the thread can continue with the modified
state after the loop.

To approximate the effect of the loop body on an execu-
tion state, a fixpoint for this loop is constructed. For our
purposes, a fixpoint is an execution state F that, when
used as the initial state before entering the loop, is equiv-
alent to the final execution state when the loop finishes. In
other words, after the operations of the loop body are ap-

 int j, k;

 void f()
 {
 int i = 0;
 j = k = 0;

 while (i < 100) {
 k = 1;
 if (i == 10)
 j = 2;
 i++;
 }
 }

i = 1;
j = 0;
k = 1;

i = 2;
j = 0;
k = 1;

i = ;
j = 0;
k = 1;

i = ;
j = 0;
k = 1;

i = ;
j = 2;
k = 1;

S1 S2 S3

S4

S5

S6

S7

S8

i = ;
j = ;
k = 1;

i = ;
j = ;
k = 1;

i = ;
j = ;
k = 1;

Figure 6: Fixpoint calculation.

plied to the fixpoint state F , the resulting execution state
is again F . Clearly, if there are multiple paths through the
loop, the resulting execution states at each loop exit must
be the same (and identical to F). Thus, whenever the ef-
fect of a loop on an execution state must be determined,
we transform this state into a fixpoint for this loop. This
transformation is often called widening. Then, the thread
can continue after the loop using the fixpoint as its new
execution state.

The fixpoint for a loop is constructed in an iterative fash-
ion as follows: Starting with the execution state S1 after
the first execution of the loop body, we calculate the ex-
ecution state S2 after a second iteration. Then, S1 and
S2 are compared. For each register and each memory lo-
cation that hold different values (i.e., different symbolic
expressions), we assign⊥ as the new value. The resulting
state is used as the new state and another iteration of the
loop is performed. This is repeated until S i and S(i+1) are
identical. In case of multiple paths through the loop, the
algorithm is extended by collecting one exit state S i for
each path and then comparing all pairs of states. When-
ever a difference between a register value or a memory
location is found, this location is set to ⊥. The iterative
algorithm is guaranteed to terminate, because at each step,
it is only possible to convert the content of a memory lo-
cation or a register to ⊥. Thus, after each iteration, the
states are either identical or the content of some locations
is made unknown. This process can only be repeated until
all values are converted to unknown and no information is
left.

An example for a fixpoint calculation (using C code in-
stead of x86 assembler) is presented in Figure 6. In this
case, the execution state comprises of the values of the
three involved variables i, j, and k. After the first loop
iteration, the execution state S1 is reached. Here, i has
been incremented once, k has been assigned the constant
1, and j has not been modified. After a second iteration,
S2 is reached. Because i has changed between S1 and S2,

its value is set to ⊥ in S3. Note that the execution has
not modified j, because the value of i was known to be
different from 10 at the if-statement. Using S3 as the
new execution state, two paths are taken through the loop.
In one case (S4), j is set to 2, in the other case (S5), the
variable j remains 0. The reason for the two different ex-
ecution paths is the fact that i is no longer known at the
if-statement and, thus, both paths have to be followed.
Comparing S3 with S4 and S5, the difference between
the values of variable j leads to the new state S6 in which
j is set to ⊥. As before, the new state S6 is used for the
next loop iteration. Finally, the resulting states S7 and S8

are identical to S6, indicating that a fixpoint is reached.

In the example above, we quickly reach a fixpoint. In gen-
eral, by considering all modified values as unknown (set-
ting them to ⊥), the termination of the fixpoint algorithm
is achieved very quickly. However, the approximation
might be unnecessarily imprecise. For our current pro-
totype, we use this simple approximation technique [13].
However, we plan to investigate more sophisticated fix-
point algorithms in the future.

To determine loops in the control flow graph, we use the
algorithm by Lengauer-Tarjan [12], which is based on
dominator trees. Note, however, that the control flow
graph does not take into account indirect jumps. Thus,
whenever an indirect control flow transfer instruction is
encountered during symbolic execution, we first check
whether this instruction can be used to reach the target
address t. If this is not the case, the execution thread is
terminated at this point.

4.3 Generating Configurations

As mentioned in Section 4, the aim of the symbolic ex-
ecution is to identify code pointers that can be modified
to point to the attacker code. To this end, indirect jump
and function call instructions, as well as data transfer in-
structions (i.e., x86mov) that could overwrite function re-

80482a8: jmp *0x80495a4 <printf>
...

8048394: cmpl $0x0,0x80495b4
804839b: je 80483a9
804839d: movl $0x80484a4,(%esp,1)
80483a4: call 80482a8
80483a9:

int flag;

void f()
{
 if (flag)
 printf("flag\n");
}

Path Constraint:

*0x80495b4 > 0

Jump Target Constraint:

*0x80495a4 == t
U

=
Linear Inequality System:

*0x80495b4 > 0
*0x80495a4 == t

Figure 7: Deriving an appropriate configuration.

turn addresses, are of particular interest. Thus, whenever
the symbolic execution engine encounters such an instruc-
tion, it is checked whether it can be exploited.

An indirect jump (or call) can be exploited, if it is pos-
sible for the attacker to control the jump (or call) target.
In this case, it would be easy to overwrite the legitimate
target with the address t of the attacker code. To deter-
mine whether the target can be overwritten, the current
execution state is examined. In particular, the symbolic
expression that represents the target of the control trans-
fer instruction is analyzed. The reason is that if it were
possible to force this symbolic expression to evaluate to t,
then the attacker could achieve her goal.

Let the symbolic expression of the target of the control
transfer instruction be called st. To check whether it is
possible to force the target address of this instruction to
t, the constraint st = t is generated (this constraint sim-
ply expresses the fact that st should evaluate to the target
address t). Now, we have to determine whether this con-
straint can be satisfied, given the current path constraints.
To this end, the constraint st = t is added to the path
constraints, and the resulting linear inequality system is
solved.

If the linear inequality system has a solution, then the at-
tacker can find a configurationC (i.e., she can prepare the
environment) so that the execution of the application code
using this configuration leads to an indirect jump (or call)
to address t. In fact, the solution to the linear inequal-
ity system directly provides the desired configuration. To
see this, recall that the execution state is a function of the
initial state. As a result, the symbolic expressions are in-
teger polynomials over variables that describe the initial
state of the system, before execution has started from ad-
dress s. Thus, a symbolic term expresses the current value
of a register or a memory location as a function of the ini-
tial values. Therefore, the solution of the linear inequality
system denotes which variables of the initial state have to
be set, together with their appropriate values, to achieve

the desired result. Because the configuration fulfills the
path constraints of the current symbolic execution thread,
the actual execution will follow the path of this thread.
Moreover, the target value of the indirect control trans-
fer instruction will be t. Variables that are not part of the
linear inequality system do not have an influence on the
choice of the path or on the target address of the control
flow instruction, thus, they do not need to be modified.

As an example, consider the sequence of machine instruc-
tions (and corresponding C source code) shown in Fig-
ure 7. In this example, the set of path constraints at the
indirect jump consists of a single constraint that requires
flag (stored at address 0x80495b4) to be greater than
0. After adding the constraint that requires the jump tar-
get (the address of the shared library function printf
stored at 0x80495a4) to be equal to t, the inequality sys-
tem is solved. In this case, the solution is trivial: the con-
tent of the memory location that holds the jump target is
set to t and variable flag is set to 1. In fact, any value
greater than 0 would be suitable for flag, but our con-
straint solver returns 1 as the first solution.

The handling of data transfer instructions (store opera-
tions) is similar to the handling of control transfer instruc-
tions. The only difference is that, for a data transfer in-
struction, it is necessary that the destination address of
the operation be set to a function return address and that
the source of the operation be set to t. If this is the case,
the attacker can overwrite a function return address with
the address of the attacker code, and, on function return,
control is recovered. For each data transfer instruction,
two constraints are added to the linear inequation system.
One constraint requires that the destination address of the
store operation is equal to the function return address. The
other constraint requires that the stored value is equal to t.
Also, a check is required that makes sure that no system
call is invoked between the modification of the function
return address and its use in the function epilogue (i.e., on
function return). The reason is that the intrusion detec-
tion system verifies the integrity of the call stack at each

system call. Note, however, that most applications do not
invoke system calls directly but indirectly using library
functions, which are usually called indirectly via the PLT.
To solve the linear constraint systems, we use the Parma
Polyhedral Library (PPL) [1]. In general, solving a lin-
ear constraint system is exponential in the number of in-
equalities. However, PPL uses a number of optimizations
to improve the run time in practice and the number of in-
equalities is usually sufficiently small.

4.4 Memory Aliasing and Unknown Stores

In the previous discussion, two problems were ignored
that considerably complicate the analysis for real pro-
grams: memory aliasing and store operations to unknown
destination addresses.

Memory aliasing refers to the problem that two different
symbolic expressions s1 and s2 point to the same address.
That is, although s1 and s2 contain different variables,
both expressions evaluate to the same value. In this case,
the assignment of a value to an address that is specified
by s1 has unexpected side effects. In particular, such an
assignment simultaneously changes the content of the lo-
cation pointed to by s2.

Memory aliasing is a typical problem in static analy-
sis, which also affects high-level languages with pointers
(such as C). Unfortunately, the problem is exacerbated at
machine code level. The reason is that, in a high-level
language, only a certain subset of variables can be ac-
cessed via pointers. Also, it is often possible to perform
alias analysis that further reduces the set of variables that
might be subject to aliasing. Thus, one can often guar-
antee that certain variables are not modified by write op-
erations through pointers. At machine level, the address
space is uniformly treated as an array of storage locations.
Thus, a write operation could potentiallymodify any other
variable.

In our prototype, we initially take an optimistic approach
and assume that different symbolic expressions refer to
different memory locations. This approach is motivated
by the fact that C compilers (we use gcc 3.3 for our
experiments) address local and global variables so that a
distinct expression is used for each access to a different
variable. In the case of global variables, the address of the
variable is directly encoded in the instruction, making the
identification of the variable particularly easy. For each
local variable, the access is done by calculating a different
offset to the value of the base pointer register (%ebp).

Of course, our optimistic assumption might turn out to be
incorrect, and we assume the independence of two sym-
bolic expressions when, in fact, they refer to the same

memory location. To address this problem, we introduce
an additional a posteriori check after a potentially ex-
ploitable instruction was found. This check operates by
simulating the program execution with the new configu-
ration that is derived from the solution of the constraint
system.

In many cases, having a configuration in which sym-
bolic variables have concrete numerical values allows one
to resolve symbolic expressions directly to unambiguous
memory locations. Also, it can be determined with cer-
tainty which continuation of a conditional branch is taken.
In such cases, we can guarantee that control flow will
be successfully regained. In other cases, however, not
all symbolic expressions can be resolved and there is a
(small) probability that aliasing effects interfere with our
goal. In our current system, this problem is ignored. The
reason is that an attacker can simply run the attack to
check whether it is successful or not. If the attack fails,
one can manually determine the reason for failure and
provide the symbolic execution engine with aliasing in-
formation (e.g., adding constraints to specify that two ex-
pressions are identical). In the future, we will explore
mechanisms to automatically derive constraints such that
all symbolic expressions can be resolved to a concrete
value.

A store operation to an unknown address is related to the
aliasing problem as such an operation could potentially
modify any memory location. Again, we follow an op-
timistic approach and assume that such a store operation
does not interfere with any variable that is part of the so-
lution of the linear inequality system (and thus, part of the
configuration) and use simulation to check the validity of
this assumption.

5 Experimental Results

This section provides experimental results that demon-
strate that our symbolic execution technique is capable of
generating configurationsC in which control is recovered
after making a system call (and, in doing so, temporar-
ily transferring control to the application program). For
all experiments, the programs were compiled using gcc
3.3 on a x86 Linux host. Our experiments were carried
out on the binary representation of programs, without ac-
cessing the source code.

For the first experiment, we attempted to exploit three
sample programs that were protected by the intrusion de-
tection systems presented in [4] and [14]. The first vulner-
able program is shown in Figure 8. This program starts by
reading a password from standard input. If the password
is correct (identical to the hard-coded string “secret”), a

command is read from a file and then executed with supe-
ruser privileges. Also, the program has a logging facility
that can output the command and the identifier of the user
that has initially launched the program. The automaton in
Figure 9 shows the relevant portion of the graph that de-
termines the sequence of system calls that are permitted
by the intrusion detection system. The first read system
call corresponds to the reading of the password (on line
23), while the execve call corresponds to the execution
of the command obtained from the file (on line 30). Note
the two possible sequences that result because commands
can be either logged or not.

 1: #define CMD_FILE "commands.txt"
 2:
 3: int enable_logging = 0;
 4:
 5: int check_pw(int uid, char *pass)
 6: {
 7: char buf[128];
 8: strcpy(buf, pass);
 9: return !strcmp(buf, "secret");
10: }
11:
12: int main(int argc, char **argv)
13: {
14: FILE *f;
15: int uid;
16: char passwd[256], cmd[128];
17:
18: if ((f = fopen(CMD_FILE, "r")) == NULL) {
19: perror("error: fopen"); exit(1);
20: }
21:
22: uid = getuid();
23: fgets(passwd, sizeof(passwd), stdin);
24:
25: if (check_pw(uid, passwd)) {
26: fgets(cmd, sizeof(cmd), f);
27: if (enable_logging)
28: printf("uid [%d]: %s\n", uid, cmd);
29: setuid(0);
30: if (execl(cmd, cmd, 0) < 0) {
31: perror("error: execl"); exit(1);
32: }
33: }
34: }

Figure 8: First vulnerable program.

It can be seen that the program suffers from a simple
buffer overflow vulnerability in the check pw() func-
tion (on line 8). This allows an attacker to inject code and
to redirect the control flow to an arbitrary location. One
possibility to redirect control would be directly after the
check of the password, before the call to the fgets()
function (on line 26). However, in doing so, the attacker
can not modify the command that is being executed be-
cause fgets() is used to retrieve the command. One
solution to this problem could be to first modify the con-
tent of the command buffer cmd, and then jump directly

to the setuid() function, bypassing the part that reads
the legitimate command from the file. By doing so, how-
ever, an alarm is raised by the intrusion detection system
that observes an invalid setuid system call while ex-
pecting a read. To perform a classic mimicry attack, the
intruder could simply issue a bogus read call, but, in our
case, such a call would be identified as illegal as well. The
reason is that the source of the system call would not be
the expected instruction in the application code.

read

fstat64

setuid32

execve

write

mmap2

read

Figure 9: Fragment of automaton that captures permitted
system call sequences.

To exploit this program such that an arbitrary command
can be executed in spite of the checks performed by the in-
trusion detection system, it is necessary to regain control
after the call to fgets(). In this case, the attacker could
replace the name of the command and then continue exe-
cution with the setuid() library function. To this end,
our symbolic execution engine is used to determine a con-
figuration that allows the attacker to recover control after
the fgets() call. For the first example, a simple config-
uration is sufficient in which enable logging is set
to 1 and the shared library call to printf() is replaced
with a jump to the attacker code. With this configuration,
the conditional branch (on line 27) is taken, and instead
of calling printf(), control is passed to the attacker
code. This code can then change the cmd parameter of
the subsequent execve() call (on line 30) and contin-
ues execution of the original program on line 29. Note
that the intrusion detection system is evaded because all
system calls are issued by instructions in the application
code segment and appear in the correct order.

The buffer overflow in check pw() is used to inject the
exploit code that is necessary to set up the environment.
After the environment is prepared, control is returned to
the original application before fgets(), bypassing the

password check routine. Our system is generating actual
exploit code that handles the setup of a proper configura-
tion. Thus, this and the following example programs were
successfully exploited by regaining control and chang-
ing the command that was executed by execl(). In all
cases, the attacks remained undetected by the used intru-
sion detection systems [4, 14].

As a second example, consider a modified version of the
initial program as shown in Figure 10. In this example,
the call to printf() is replaced with the invocation of
the custom audit function do log(), which records the
identifier of the last command issued by each user (with
uid < 8192). To this end, a unique identifier called
cmd id is stored in a table that is indexed by uid (on
line 6).

 1: int enable_logging = 0;
 2: int cmd_id = 0;
 3: int uid_table[8192];
...

 4: void do_log(int uid)
 5: {
 6: uid_table[uid] = cmd_id++;
 7: }
...

 8: int main(int argc, char **argv)
...
 9: if (check_pw(uid, passwd)) {
10: fgets(cmd, sizeof(cmd), f);
11: if (enable_logging)
12: do_log(uid);
13: setuid(0);
14: if (execl(cmd, cmd, 0) < 0) {
15: perror("error: execl"); exit(1);
16: }
17: }
18: }

Figure 10: Second vulnerable program.

For this example, the application was statically linked so
that we cannot intercept any shared library calls. As for
the previous program, the task is to recover control after
the fgets() call on line 10. Our symbolic execution
engine successfully determined that the assignment to the
array on line 6 can be used to overwrite the return ad-
dress of do log(). To do so, it is necessary to assign a
value to the local variable uid so that when this value
is added to the start address of the array uid table,
the resulting address points to the location of the return
address of do log(). Note that our system is capable
of tracking function calls together with the corresponding
parameters. In this example, it is determined that the lo-
cal variable uid is used as a parameter that is later used
for the array access. In addition, it is necessary to store
the address of the attack code in the variable cmd id and

turn on auditing by setting enable logging to a value
�= 0.

One might argue that it is not very realistic to store identi-
fiers in a huge table when most entries are 0. Thus, for the
third program shown in Figure 11, we have replaced the
array with a list. In this example, the do log() function
scans a linked list for a record with a matching user iden-
tification (on lines 12–14). When an appropriate record
already exists, the cmd id field of the cmd entry struc-
ture is overwritten with the global command identifier
cmd id. When no suitable record can be found, a new
one is allocated and inserted at the beginning of the list
(on lines 16–21).

 1: struct cmd_entry {
 2: int cmd_id; unsigned int uid;
 3: struct cmd_entry *next;
 4: };
 5: int enable_logging = 0;
 6: int cmd_id = 0;
 7: struct cmd_entry *cmds = NULL;
...

 8: void do_log(int uid)
 9: {
10: struct cmd_entry *p;
11:
12: for (p = cmds; p != NULL; p = p->next)
13: if (p->uid == uid)
14: break;
15:
16: if (p == NULL) {
17: p = (struct cmd_entry *)
 calloc(1, sizeof(struct cmd_entry));
18: p->uid = uid;
19: p->next = cmds;
20: cmds = p;
21: }
22:
23: p->cmd_id = cmd_id++;
24: }
...

25: int main(int argc, char **argv)
...
26: if (check_pw(uid, passwd)) {
27: fgets(cmd, sizeof(cmd), f);
28: if (enable_logging)
29: do_log(uid);
30: setuid(0);
31: if (execl(cmd, cmd, 0) < 0) {
32: perror("error: execl"); exit(1);
33: }
34: }
35: }

Figure 11: Third vulnerable program.

When attempting to find a suitable instruction to direct
control flow back to the attacker code, the operation on
line 23 seems appropriate. The reason is that this state-
ment assigns the global variable cmd id to the field of a
structure that is referenced by the pointer variable p. Un-

fortunately, p is not under direct control of the attacker.
This is because in the initialization part of the for-loop
on line 12, the content of the pointer to the global list head
cmds is assigned to p. In addition, the loop traverses
the list of command records until a record is found where
the uid field is equivalent to the single parameter (uid)
of the do log() function. If, at any point, the next
pointer of the record pointed to by p is NULL, the loop
terminates. Then, a freshly allocated heap address is as-
signed to p on line 17. When this occurs, the destination
of the assignment statement on line 23 cannot be forced
to point to the function return address anymore, which is
located on the stack.

Function Parameter
(int uid)

Return Address

Old Frame Pointer

Local Variables

struct cmd_entry
*next;

unsigned int uid;

int cmd_id;

p =
p->cmd_id

p->uid

Stack struct cmd_entry
pointed to by p

Figure 12: Successful return address overwrite via p.

The discussion above underlines that even if a pointer as-
signment is found, it is not always clear whether this as-
signment can be used to overwrite a return address. For
this example, our symbolic execution engine discovered a
possibility to overwrite the return address of do log().
This is achieved by preparing a configuration in which
the cmds variable points directly to the return address of
do log(). After the content of cmds is assigned to p,
p→uid is compared to the uid parameter on line 13.
Because of the structure of the cmd entry record, this
comparison always evaluates to true. To see why this
is the case, refer to Figure 12. The figure shows that
when p points to the function’s return address, p→uid
points to the location that is directly “above” this ad-
dress in memory. Because of the x86 procedure calling
convention, this happens to be the first argument of the
do log() function. In other words, p→uid and the
parameter uid refer to the same memory location, there-
fore, the comparison has to evaluate to true. As before,
for a successful overwrite, it is necessary to set the value

of cmd id to t and enable auditing by assigning 1 to
enable logging.

Without the automatic process of symbolic execution,
such an opportunity to overwrite the return address is
probably very difficult to spot. Also, note that no knowl-
edge about the x86 procedure calling convention is en-
coded in the symbolic execution engine. The possibility
to overwrite the return address, as previously discussed,
is found directly by (symbolically) executing the machine
instructions of the binary. If the compiler had arranged
the fields of the cmd entry structure differently, or if a
different calling convention was in use, this exploit would
not have been found.

For the second experiment, we used our symbolic execu-
tion tool on three well-known applications: apache2,
the netkit ftpd server, and imapd from the Univer-
sity of Washington. The purpose of this experiment was
to analyze the chances of an attacker to recover control
flow in real-world programs. To this end, we randomly se-
lected one hundred addresses for each program that were
evenly distributed over the code sections of the analyzed
binaries. From each address, we started the symbolic ex-
ecution processes. The aim was to determine whether it is
possible to find a configuration and a sequence of instruc-
tions such that control flow can be diverted to an arbitrary
address. In the case of a real attack, malicious code could
be placed at this address. Note that all applications were
dynamically linked (which is the default on modern Unix
machines).

Program Instr. Success Failed
Return Exhaust

apache2 51,862 83 12 5
ftpd 9,127 93 7 0
imapd 133,427 88 11 1

Table 1: Symbolic execution results for real-world appli-
cations.

Table 1 summarizes the results for this experiment. For
each program, the number of code instructions (column
“Instr.”) are given. In addition, the table lists the number
of test cases for which our program successfully found a
configuration (column “Success”) and the number of test
cases for which such a configuration could not be found
(column “Failed”).

In all successful test cases, only a few memory locations
had to be modified to obtain a valid configuration. In fact,
in most cases, only a single memory location (a function
address in the PLT) was changed. The code that is neces-
sary to perform these modifications is in the order of 100

bytes and can be easily injected remotely by an attacker
in most cases.

A closer examination of the failed test cases revealed that
a significant fraction of these cases occurred when the
symbolic execution thread reached the end of the func-
tion where the start address is located (column “Return”).
In fact, in several cases, symbolic execution terminated
immediately because the randomly chosen start address
happened to be a ret instruction. Although the symbolic
execution engine simulates the run-time stack, and thus
can perform function calls and corresponding return op-
erations, a return without a previous function call cannot
be handled without additional information. The reason is
that whenever a symbolic execution thread makes a func-
tion call, the return address is pushed on the stack and
can be used later by the corresponding return operation.
However, if symbolic execution begins in the middle of a
function, when this initial function completes, the return
address is unknown and the thread terminates.

When an intruder is launching an actual attack, she usu-
ally possesses additional information that can be made
available to the analysis process. In particular, possible
function return addresses can be extracted from the pro-
gram’s call graph or by examining (debugging) a running
instance of the victim process. If this information is pro-
vided, the symbolic evaluation process can continue at the
given addresses. Therefore, the remaining test cases (col-
umn “Exhaust”) are of more interest. These test instances
failed because the symbolic execution process could not
identify a possibility to recover control flow. We set a
limit of 1,000 execution steps for each thread. After that,
a thread is considered to have exhausted the search space
and it is stopped. The reason for this limit is twofold.
First, we want to force the analysis to terminate. Second,
when the step limit is reached, many memory locations
and registers already contain unknown values.

Our results indicate that only a small amount of test cases
failed because the analysis engine was not able to identify
appropriate configurations. This supports the claim that
our proposed evasion techniques can be successfully used
against real-world applications.

Program Steps Time
Avg. Max. Min. (in seconds)

apache2 24 131 0 12.4
ftpd 7 62 0 0.3
imapd 46 650 0 1.2

Table 2: Execution steps and time to find configurations.

Table 2 provides more details on the number of steps re-
quired to successfully find a configuration. In this table,
the average, maximum, and minimum number of steps
are given for the successful threads. The results show
that, in most cases, a configuration is found quickly, al-
though there are a few outliers (for example, 650 steps for
one imapd test case). Note that all programs contained
at least one case for which the analysis was immediately
successful. In these cases, the random start instruction
was usually an indirect jump or indirect call that could be
easily redirected.

The table also lists the time in seconds that the symbolic
execution engine needed to completely check all hundred
start addresses (successful and failed cases combined)
for each program. The run time for each individual test
case varies significantly, depending on the amount of con-
straints that are generated and the branching factor of the
program. When a program contains many branches, the
symbolic execution process has to follow many different
threads of execution, which can generate an exponential
path explosion in the worst case. In general, however, the
run time is not a primary concern for this tool and the re-
sults demonstrate that the system operates efficiently on
real-world input programs.

6 Conclusions

In this paper, we have presented novel techniques to evade
two well-known intrusion detection systems [4, 14] that
monitor system calls. Our techniques are based on the
idea that application control flow can be redirected to ma-
licious code after the intruder has passed control to the
application to make a system call. Control is regained
by modifying the process environment (data, heap, and
stack segment) so that the program eventually follows an
invalid code pointer (a function return address or an indi-
rect control transfer operation). To this end, we have de-
veloped a static analysis tool for x86 binaries, which uses
symbolic execution. This tool automatically identifies in-
structions that can be used to redirect control flow. In ad-
dition, the necessary modification to the environment are
computed and appropriate code is generated. Using our
system, we were able to successfully exploit three sam-
ple programs, evading state-of-the-art system call moni-
tors. In addition, we applied our tool to three real-world
programs to demonstrate the general applicability of our
techniques.

The static analysis mechanisms that we developed for this
paper could be used for a broader range of binary anal-
ysis problems in the future. One possible application is
the identification of configurations for which the current
function’s return address is overwritten. This might allow

us to build a tool that can identify buffer overflow vulnera-
bilities in executable code. Another application domain is
the search for viruses. Since malicious code is usually not
available as source code, binary analysis is a promising
approach to deal with this problem. In addition, we hope
that our work has brought to attention the intrinsic prob-
lem of defense mechanisms that allow attackers a large
amount of freedom in their actions.

Acknowledgments

This research was supported by the National Sci-
ence Foundation under grants CCR-0209065 and CCR-
0238492.

References

[1] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill.
Possibly not closed convex polyhedra and the Parma
Polyhedra Library. In 9th International Symposium
on Static Analysis, 2002.

[2] P. Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-
points. In 4th ACM Symposium on Principles of Pro-
gramming Languages (POPL), 1977.

[3] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and
B. Miller. Formalizing sensitivity in static analysis
for intrusion detection. In IEEE Symposium on Se-
curity and Privacy, 2004.

[4] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack in-
formation. In IEEE Symposium on Security and Pri-
vacy, 2003.

[5] S. Forrest. A Sense of Self for UNIX Processes. In
IEEE Symposium on Security and Privacy, 1996.

[6] D. Gao, M. Reiter, and D. Song. Gray-Box Extrac-
tion of Execution Graphs for Anomaly Detection. In
11th ACM Conference on Computer and Communi-
cation Security (CCS), 2004.

[7] D. Gao, M. Reiter, and D. Song. On Gray-Box
Program Tracking for Anomaly Detection. In 13th
Usenix Security Symposium, 2004.

[8] J. Giffin, S. Jha, and B. Miller. Detecting Manipu-
lated Remote Call Streams. In 11th Usenix Security
Symposium, 2002.

[9] J. Giffin, S. Jha, and B.P. Miller. Efficient context-
sensitive intrusion detection. In 11th Network and
Distributed System Security Symposium (NDSS),
2004.

[10] J. King. Symbolic Execution and Program Testing.
Communications of the ACM, 19(7), 1976.

[11] L. Lam and T. Chiueh. Automatic Extraction of Ac-
curate Application-Specific Sandboxing Policy. In
Symposium on Recent Advances in Intrusion Detec-
tion (RAID), 2004.

[12] T. Lengauer and R. Tarjan. A Fast Algorithm for
Finding Dominators in a Flowgraph. ACM Trans-
actions on Programming Languages and Systems,
1(1), 1979.

[13] F. Nielson, H. Nielson, and C. Hankin. Principles of
Program Analysis. Springer Verlag, 1999.

[14] R. Sekar, M. Bendre, D. Dhurjati, and P. Bolli-
neni. A fast automaton-based method for detecting
anomalous program behaviors. In IEEE Symposium
on Security and Privacy, 2001.

[15] K. Tan, K. Killourhy, and R. Maxion. Undermining
an Anomaly-Based Intrusion Detection System Us-
ing Common Exploits. In 5th Symposium on Recent
Advances in Intrusion Detection (RAID), 2002.

[16] D. Wagner and D. Dean. Intrusion Detection via
Static Analysis. In IEEE Symposium on Security and
Privacy, 2001.

[17] D. Wagner and P. Soto. Mimicry Attacks on Host-
Based Intrusion Detection Systems. In 9th ACM
Conference on Computer and Communications Se-
curity (CCS), 2002.

[18] C. Warrender, S. Forrest, and B.A. Pearlmutter. De-
tecting intrusions using system calls: Alternative
data models. In IEEE Symposium on Security and
Privacy, 1999.

[19] A. Wespi, M. Dacier, and H. Debar. Intrusion De-
tection Using Variable-Length Audit Trail Patterns.
In Recent Advances in Intrusion Detrection (RAID),
2000.

[20] H. Xu, W. Du, and S. Chapin. Context Sensitive
Anomaly Monitoring of Process Control Flow to
Detect Mimicry Attacks and Impossible Paths. In
Symposium on Recent Advances in Intrusion Detec-
tion (RAID), 2004.

