
Behavior-based Spyware Detection

Engin Kirda and Christopher Kruegel

Secure Systems Lab

Technical University Vienna

{ek,chris}@seclab.tuwien.ac.at

Greg Banks, Giovanni Vigna, and Richard A. Kemmerer

Department of Computer Science

University of California, Santa Barbara

{nomed,vigna,kemm}@cs.ucsb.edu

Abstract

Spyware is rapidly becoming a major security is-

sue. Spyware programs are surreptitiously installed on a

user’s workstation to monitor his/her actions and gather

private information about a user’s behavior. Current anti-

spyware tools operate in a way similar to traditional anti-

virus tools, where signatures associated with known spy-

ware programs are checked against newly-installed ap-

plications. Unfortunately, these techniques are very easy

to evade by using simple obfuscation transformations.

This paper presents a novel technique for spyware de-

tection that is based on the characterization of spyware-

like behavior. The technique is tailored to a popular

class of spyware applications that use Internet Explorer’s

Browser Helper Object (BHO) and toolbar interfaces to

monitor a user’s browsing behavior. Our technique uses a

composition of static and dynamic analysis to determine

whether the behavior of BHOs and toolbars in response

to simulated browser events should be considered mali-

cious. The evaluation of our technique on a representa-

tive set of spyware samples shows that it is possible to

reliably identify malicious components using an abstract

behavioral characterization.

Keywords: spyware, malware detection, static analysis,

dynamic analysis.

1 Introduction

Spyware is rapidly becoming one of the major threats

to the security of Internet users [20, 23]. A compre-

hensive analysis performed by Webroot (an anti-spyware

software producer) and Earthlink (a major Internet Ser-

vice Provider) showed that a large portion of Internet-

connected computers are infected with spyware [1], and

that, on average, each scanned host has 25 different spy-

ware programs installed [7].

Different from other types of malware, such as viruses

and worms, the goal of spyware is generally not to cause

damage or to spread to other systems. Instead, spyware

programs monitor the behavior of users and steal private

information, such as keystrokes and browsing patterns.

This information is then sent back to the spyware dis-

tributors and used as a basis for targeted advertisement

(e.g., pop-up ads) or marketing analysis. Spyware pro-

grams can also “hijack” a user’s browser and direct the

unsuspecting user to web sites of the spyware’s choos-

ing. Finally, in addition to the violation of users’ privacy,

spyware programs are also responsible for the degrada-

tion of system performance because they are often poorly

coded.

A number of anti-spyware products, whose goal is the

identification and removal of unwanted spyware, have

been developed. These tools are mostly based on the

same technology used by anti-virus products. That is,

they identify known spyware instances by comparing

the binary image of these programs with a number of

uniquely-characterizing signatures. These signatures are

manually generated by analyzing existing samples of

spyware. As a consequence, these anti-spyware tools

suffer from the same drawbacks as signature-based anti-

virus tools, including the need for continuous updating of

their signature set and their inability to deal with simple

obfuscation techniques [4].

This paper presents a novel spyware detection tech-

nique that overcomes some of the limitations of exist-

ing anti-spyware approaches. Our technique is based on

an abstract characterization of the behavior of a popu-

lar class of spyware programs that rely on Internet Ex-

plorer’s Browser Helper Object (BHO) and toolbar inter-

faces to monitor a user’s browsing behavior. More pre-

cisely, our technique applies a composition of static and

dynamic analysis to binary objects to determine if a com-

ponent monitors users actions and reports its findings to

an external entity. This characterization is independent

of the particular binary image and therefore can be used

to identify previously unseen spyware programs, and, in

addition, it is resilient to obfuscation.

The main contributions of this paper are as follows:

• We introduce a novel characterization of the behav-

ior of spyware components that are implemented as

Browser Helper Objects or toolbars.

• We present novel static and dynamic analysis tech-

niques to reliably identify malicious behavior in

Browser Helper Objects and toolbar components.

• We present experimental results on a substantial

body of spyware and benign samples that demon-

strate the effectiveness of our approach.

The remainder of this paper is structured as follows.

In Section 2, we present related work in the field of

behavior-based malware detection in general and spy-

ware detection in particular. Section 3 provides some

background information on Browser Helper Objects and

toolbars. It also shows how they are exploited by spy-

ware programs to monitor user behavior and to hijack

browser actions. In Section 4, we describe our abstract

characterization of spyware-like behavior. In Section 5,

we motivate the use of static and dynamic analysis for

spyware detection, and we provide the details of our

technique in sections 6 and 7. Section 8 discusses possi-

ble limitations of our proposed system. In, Section 9 we

provide an experimental evaluation of the effectiveness

of our technique. Finally, Section 10 briefly concludes

and outlines future work.

2 Related Work

Spyware is difficult to define. There are many types of

spyware that behave in different ways and perform ac-

tions that represent different levels of “maliciousness.”

For example, “adware” programs that present targeted

advertisements to the user are considered less malicious

than other forms of spyware, such as key-loggers, which

record every single key pressed by the user. Regardless

of the type of privacy violation performed, spyware is

generally undesirable code that the user wants to remove

from his/her system.

The increasing sensitivity of consumers to the spyware

problem prompted a number of anti-spyware commer-

cial products. For example, both AdAware [2] and Spy-

Bot [22] are popular tools that are able to remove a large

number of spyware programs. Recently, Microsoft re-

leased a beta version of an anti-spyware tool, aptly called

Windows AntiSpyware [14].

Current spyware detection tools use signatures to de-

tect known spyware, and, therefore, they suffer from

the drawback of not being able to detect previously un-

seen malware instances. This is a deficiency shared by

other malware-detection tools, such as anti-virus prod-

ucts and many network-based intrusion detection sys-

tems [17, 19]. Recently, researchers have tried to over-

come these limitation by proposing behavior-based mal-

ware detection techniques. These techniques attempt to

characterize a program’s behavior in a way that is inde-

pendent of its binary representation. By doing this, it is

possible to detect entire classes of malware and to be re-

silient to obfuscation and polymorphism.

For example, in [5] the authors characterize different

variations of worms by identifying semantically equiv-

alent operations in the malware variants. Another ap-

proach is followed in [11], which characterizes the be-

havior of kernel-level rootkits. In this case, the authors

use static analysis to determine if a loadable kernel mod-

ule is accessing kernel memory locations that are typi-

cally used by rootkits (e.g., the system call table).

There are many advantages to representing malware

in an abstract way. For instance, by using behavioral

characterizations to detect malicious applications, one

can obviate the need for a large data base of signatures

to identify each known piece of malware. Another im-

portant benefit is that the characterization is resilient to

malware variants and allows for the detection of pre-

viously unseen malware instances. An example of us-

ing behavior characterization is Microsoft’s Strider Gate-

keeper [24]. This tool monitors auto-start extensibility

points (ASEPs) to determine if software that will be exe-

cuted automatically at startup is being surreptitiously in-

stalled on a system.

Our approach is similar to the one pursued by Strider

Gatekeeper, because our goal is to model spyware-like

behavior. Consequently, our behavioral classifications

are not specifically tailored to a single spyware program,

but, instead, they are able to detect entire classes of spy-

ware applications. However, our technique is more pow-

erful than the one used by Strider Gatekeeper, because it

identifies a more general behavior pattern, which is the

acquisition of private information and the leaking of this

information outside the boundaries of the application. In

addition, our technique uses a combination of static and

dynamic analysis, which allows for a very precise char-

acterization of the behavior of an application in reaction

to browser events, thus, reducing the chance of false pos-

itives.

The use of static analysis to analyze the behavior of

malware has been proposed previously in [5]. However,

the technique proposed by Christodorescu et al. is tai-

lored to detect different variations of the same malware

(e.g., different versions of the NetSky worm). Our tech-

nique, instead, focuses on abstract, spyware-like behav-

ior and is not limited to detecting just one spyware pro-

gram and its variants.

The technique presented in this paper, however, is not

completely general. We focus explicitly on one type of

spyware, that is, malware that exploits the hooks pro-

vided by Microsoft’s Internet Explorer to monitor the

actions of a user. This is done by using the Browser

Helper Object (BHO) interface or by acting as a browser

toolbar object. Our initial focus is justified by the fact

that the overwhelming majority of spyware has a com-

ponent based on one of these two technologies. This

is confirmed not only by our own experience in ana-

lyzing various spyware components but also by a recent

study [24], which found that out of 120 distinct spyware

programs, just under 90 used BHOs as an entry point

to monitor user activity and approximately 46 used the

IE toolbar mechanism (note that some spyware programs

used both mechanisms). In addition to these findings, a

US-CERT report [8] names BHOs as one of the more

frequently used techniques employed by spyware along

with browser session hijacking and stand-alone applica-

tions. Other forms of spyware (e.g., stand-alone appli-

cations) are not currently being addressed but are open

questions for future work. Additionally, we recognize

that spyware does not only affect the Microsoft Win-

dows platform or the Internet Explorer browser. Mozilla

products also have their problems [15], and have not

been completely free from spyware [9, 26]. Other plat-

forms also contain ASEP hooks similar to those found

in Windows as described in [24]. However, as of to-

day the occurrence of spyware affecting other platforms

and browsers is significantly lower than that affecting

both Microsoft Windows and Internet Explorer. Still, the

growing popularity of alternatives make this an impor-

tant consideration for the future.

Because of the relevance of the Component Object

Model (COM) architecture and the hooks that Internet

Explorer provides, the next section presents some back-

ground material to help the reader who is not familiar

with these concepts. The following sections then present

the details of our detection technique.

3 Spyware, Browser Helper Objects, and

Toolbars

Spyware authors have many options on a Windows host

when it comes to looking for good vantage points from

which to glean personal information about users. For ex-

ample, Layered Service Providers, which sit between the

application-level network APIs (Application Program-

ming Interfaces) and the kernel, can filter network traffic

and/or collect information about users. Another exam-

ple is represented by background processes that are au-

tomatically executed at startup to monitor user actions.

Because sensitive information is often accessed through

web-based interfaces, browser plug-ins are another pop-

ular mechanism to collect sensitive data and monitor user

actions. Internet Explorer plug-ins, and in particular

Browser Helper Objects (BHOs) and toolbars, as men-

tioned previously, are used in the majority of spyware

programs as a mechanism to access information about a

user’s browsing habits or to control the browser’s behav-

ior.

Browser Helper Objects and toolbars are binary ob-

jects that conform to the Component Object Model

(COM). COM is a binary standard developed by Mi-

crosoft to support, among other things, a component-

based software market [25]. Every COM object im-

plements a set of interfaces, each of which is a well-

defined contract that describes what functionality the ob-

ject provides. The COM standard guarantees that the

virtual tables of interfaces remain the same across com-

pilers, allowing COM objects to be implemented and

used by any language that supports calling functions

through a table of function pointers. The IUnknown

interface must be implemented by all COM objects. It

contains reference-counting functionality and the func-

tion QueryInterface, which allows one to query for

the other interfaces that an object might implement.

A Browser Helper Object is in essence a simple COM

object that implements the IObjectWithSite inter-

face. Toolbar objects work in a way similar to BHOs and,

in addition, implement a few more interfaces and include

a graphical component.

At startup, Internet Explorer loads all the BHOs

that are registered as COM servers and whose Class

Identifiers (CLSIDs) are included under the registry key

\HKLM\SOFTWARE\Windows\CurrentVersion\
Explorer\Browser Helper Objects. Toolbars

are loaded in a similar fashion with their CLSIDs being

present under several other keys. Then, for each loaded

BHO or toolbar, the browser calls the SetSite method

exported by the IObjectWithSite interface, passing

a reference to the browser’s IUnknown interface as a

parameter. This reference can then be used by a BHO or

toolbar to query for other interfaces implemented by the

browser. Interfaces of interest includeIWebBrowser2,

which allows a BHO or toolbar to access the current

document and Uniform Resource Locator (URL) as well

as to load specific pages, and IConnectionPoint,

which allows a BHO to monitor the browser events

specified in DWebBrowserEvents2. Toolbar objects

access browser interfaces in a similar way.

By invoking the methods provided by the browser in-

terfaces, BHOs and toolbars can completely control the

browser’s behavior and access sensitive data entered by

the user during navigation. Because of this, BHOs and

toolbars are often used as the core components in spy-

ware applications.

4 Spyware Characterization

A distinctive characteristic of spyware is the fact that

a spyware component (or process) collects data about

user behavior and forwards this information to a third

party. Since we restrict our focus to spyware that is im-

plemented as a BHO or toolbar, we have to identify the

mechanisms that these components employ (i) to moni-

tor user behavior and (ii) to leak the gathered data to the

attacker.

The most straightforward mechanism to monitor user

behavior is to subscribe to browser events (using the

browser’s IConnectionPoint interface). When sub-

scribing to these events, a component is notified in re-

sponse to almost all browser actions or state changes.

For example, events are generated when a new URL is

opened, when a requested page cannot be found, or when

the download of a resource has completed. In response to

an event, the browser extension can request more infor-

mation using the COM interfaces offered by the browser.

In particular, the BHO or toolbar can request a handle to

the document that was accessed, so that it can perform

further analysis. In addition, a BHO or toolbar can react

to an event by directing the browser to another page or

opening a pop-up window. In summary, we expect to see

the spyware component interact with the web browser by

invoking browser functions in response to events.

After the spyware component has extracted the desired

information, its next task is to transmit the data to a third

party (the attacker). To this end, the information must be

either directly transfered over the network, passed to a

cooperating process running on the same host, or stored

locally (for example, in a file on disk or in the Windows

Registry). In any case, the spyware component has to in-

teract with the operating system to be able to deliver the

data to the intended recipient. 1 Even when data is tem-

porarily kept in memory, eventually an operating system

service has to be invoked to leak the data.

Because the interaction with the operating system is

necessary for a spyware component, we analyze the op-

erating system services that the component requests. In

particular, we focus on the Windows API 2 calls that

a component can use to leak information from the cur-

rent process. Again, we are only interested in the Win-

dows API calls that are performed in response to events.

The reason is that for a Browser Helper Object, event

handling code is the only code that is executed after the

1Note that we are not taking into account the possibility of using

covert channels to leak the information from the BHO or toolbar to the

outside environment. Typically, these channels are either bandwidth-

limited or generate distinctive patterns of execution.
2The Windows API provides a large number of procedures that can

be invoked to access the complete functionality of the Windows oper-

ating system (this includes kernel services, the graphical device inter-

faces, and other user interfaces).

component’s startup phase. With a toolbar, code can also

be executed when the user clicks on a user interface ele-

ment belonging to the toolbar. However, there is the sig-

nificant risk that the web browser will be closed without

ever making use of the toolbar. In this case, all informa-

tion would be lost because the spyware code is simply

not run. Thus, information can only be reliably leaked

in event handling code (the last chance at which this is

possible being in response to the event that signals the

browser is being closed).

There is one important exception to the assumption

above: A spyware component could attempt to set up an

additional path through which events can be leaked by

starting another thread or by registering a timer with an

appropriate callback function. In response to a browser

event, the collected user information would not be leaked

immediately, but it would first be stored in a globally

accessible data structure. Later, the second thread or

the timer callback function could flush out this informa-

tion without being detected. To eliminate this possibility

for evading detection, we chose a conservative approach.

That is, whenever a component can create either a thread

or a timer, all Windows API calls that this component

can invoke are included in the analysis, not only those

invoked in response to events.

We realize, of course, that benign components may in-

teract with the web browser in response to events to pro-

vide some service to the user, such as automatically dis-

playing the page source in a separate frame. Benign com-

ponents may also interact with the operating system (via

Windows API calls). For example, a component could

read some configuration parameters from a file, write en-

tries to a log-file, or download updates to the software at

startup. The key insight here is that each of the two char-

acteristics on their own does not generally warrant suspi-

cion, but together they are strong indicators of malicious

behavior. Therefore, we classify a browser helper object

or a toolbar as spyware if the component, in response to

browser events,

1. monitors user behavior by interacting with the web

browser and

2. invokes Windows API calls that can potentially leak

information about this behavior (e.g., calls to save

the data to a file or transmit information to a remote

host).

Note that our classification is more general than the

one used by virus scanners and signature-based intrusion

detection systems, as we are looking for intrinsic behav-

ioral characteristics of spyware instead of byte strings

specific to particular malware instances.

Our detection approach can take advantage of the

proposed spyware classification in one of two ways.

First, we can compare the results of our analysis (that

is, the identification of BHO/toolbar-to-browser and

BHO/toolbar-to-OS interactions in response to events)

to an a priori assembled list of browser COM functions

and Windows API calls that we deem malicious. In this

way, we define our behavioral characterization based on

prior experience and use this characterization to detect

previously unknown instances of spyware. The second

method is to automatically generate a behavioral charac-

terization by comparing the behavior of known benign

components to the behavior of known malicious ones.

More precisely, the characterization is automatically de-

rived by identifying the browser functions and Windows

API calls performed by malicious BHOs and toolbars

that are not also executed by benign samples. This char-

acterization would then be used to identify previously

unseen spyware samples.

In the following, we apply the first approach described

above. We then use the second approach as a way to

validate our choice of characterizing browser functions

and Windows API calls.

5 Component Analysis

Given our characterization of spyware, the task of the

analysis phase is to extract the behavior of an unknown

BHO or toolbar. That is, we are interested in the interac-

tion of an unknown sample with the browser and with the

operating system in response to browser events. Based

on the results of the analysis, we can then classify the

sample appropriately.

As a first step, we propose a dynamic analysis tech-

nique that exposes a suspicious component to crafted

browser events (which simulate user activity) and ana-

lyzes the component’s response. In particular, we dy-

namically record both the browser COM functions and

the Windows API functions that the component calls.

This approach exhibits some commonalities with black-

box testing in that data is sent to a component under ex-

amination and its behavior is analyzed, without knowing

anything about the component’s implementation.

An interesting problem is to determine events and in-

put that are suitable to capture the behavior of a com-

ponent. When performing black-box testing, it is typ-

ically a significant challenge to devise a set of test in-

puts that exercise the bulk of the functionality (or code

paths) of the object under test. In our case, the situa-

tion is exacerbated by the fact that we have no a pri-

ori knowledge about the functionality of the (potentially

malicious) component. Thus, it may be difficult to gen-

erate input that will reveal spyware-like behavior with

a sufficiently high probability. Consider, for example,

a spyware component that scans all web pages that are

fetched by the browser for the occurrence of certain key-

words (e.g., “car insurance”). The corresponding URL

is logged to a file only when these keywords appear on

the page. Thus, we would observe suspicious behavior

(in the form of a file system call) only if one of the test

pages actually contains the words “car insurance.” An-

other problem is that spyware often does not react consis-

tently to identical events. For example, a spyware devel-

oper might decide that a user would be exceedingly an-

noyed if a pop-up window containing an advertisement

appeared every time a page with a specific keyword was

accessed. Therefore, the pop-up would be opened only

occasionally, and, as a consequence dynamic black-box

testing alone might not be enough to observe all interest-

ing reactions.

Before discussing appropriate extensions to our anal-

ysis, an important point in the previous discussion is

the fact that the lack of coverage in the dynamic test

affects (almost) exclusively the interaction of the com-

ponent with the operating system and not its interaction

with the web browser. The reason is that a component

has to monitor the user behavior by interacting with the

web browser before any decision can be made. For ex-

ample, before a page can be scanned for the occurrence

of a certain keyword, the spyware component has to first

request the page source from the browser. Also, a spy-

ware component might not necessarily log all URLs that

a user visits. However, before the decision to write the

URL to a log-file can be made, the visited URL must be

retrieved from the browser. A spyware component might

decide to record only certain pieces of information or

engage with the environment only under certain circum-

stances. However, as a first step, it is always necessary to

extract information about the current document from the

web browser. Thus, the results of the dynamic analysis

with regards to the interaction with the web browser are

sufficiently comprehensive.

To capture all possible reactions of a component with

regards to its interaction with the operating system, we

complement the dynamic testing with a static analysis

step. To be more precise, we use dynamic analysis to

locate the entry point into the code of the component

that is responsible for handling events (i.e., the object’s

Invoke function). Starting from this entry point, the

static analysis step extracts the control flow graph of all

code regions that are responsible for handling events.

The key observation is that this control flow graph con-

tains (or encodes) all possible reactions of the component

to events. As a consequence, there is no need to confine

the analysis to the API calls that are actually observed

during dynamic testing. Instead, we can analyze all Win-

dows API calls that this component can possibly invoke

when receiving events. Following up on the example

of the spyware that scans for “car insurance” in fetched

pages, we extract the control flow graph of the code that

handles a “web page received” event during our analysis

and determine that the component might perform a file

system access under certain circumstances. Note that it

is necessary to confine the static analysis to those code

regions that are responsible for handling events. Other-

wise, the analysis could end up including API function

invocations that cannot be used for leaking information

(e.g., API calls during program startup). Taking into ac-

count these additional function calls could lead to incor-

rect classification results.

As static analysis is already required to identify the in-

teraction of a component with the operating system, one

might consider dropping the dynamic analysis step. That

is, one could attempt to solely rely on static analysis to

recover the interaction of a component both with the web

browser and with the operating system. This is difficult

for a number of reasons. One problem is that Browser

Helper Objects or toolbars often contain a number of dif-

ferent COM objects. Usually, it is not a priori evident

which of these objects will register for browser events.

Even when the correct COM object can be identified, lo-

cating the code regions that are responsible for handling

events is not straightforward. Finally, COM function in-

vocations are implemented as indirect function calls (via

the COM object’s virtual function table). Thus, it would

be significantly more difficult to statically recover the in-

teraction of the BHO or toolbar with the web browser.

To summarize, both static and dynamic analysis tech-

niques have their advantages. The dynamic analysis step

can precisely pinpoint the COM object and the code re-

gions that handle browser events. In addition, the interac-

tions between a component and the web browser can be

accurately captured. Static analysis, on the other hand,

is more comprehensive in identifying possible interac-

tion of a component with the operating system. Thus, we

believe that a combination of dynamic and static analy-

sis is most suitable to analyze the behavior of unknown

browser helper objects and toolbars.

In the previous discussion, we have not considered the

fact that a spyware component might react differently to

different events. That is, the dynamic analysis step pro-

duces a single list of COM browser functions that are

called by the component under test, and the static anal-

ysis step yields a single list of Windows API calls that

can be reached in response to events. However, it might

be beneficial to distinguish between responses associated

with different events. For example, a component might

perform a suspicious Windows API call only in response

to a certain event that conveys no relevant information

about a user’s actions (e.g., an event that signals that the

browser window has been resized). In this case, the sus-

picious API call may not leak any information, and ex-

cluding it from the list could reduce false positives. Un-

fortunately, restricting automatic analysis to certain rel-

evant events offers spyware a way to evade detection.

To see this, consider a spyware component that moni-

tors user behavior (via browser COM functions) in re-

sponse to events, but, instead of immediately leaking this

information, stores it temporarily in memory. Later, the

collected information is flushed in response to an event

that is not considered by our analysis. Therefore, we de-

cide to take the more conservative approach in order to

be more resilient to evasion.

As was mentioned in the previous section, our tech-

nique makes use of a more general characterization of

malware behavior than that used by current signature-

based systems. However, the methods used to realize

this detection strategy are not without their drawbacks.

While both our tool and the signature-based systems can

be classified as detection engines, the latter are much

faster and are practical for common desktop usage, while

our technique is more appropriate for analysts who are

looking to classify unknown instances of malware in an

automated fashion.

In the following sections, we explain in detail the dy-

namic and static analysis steps that we perform to deter-

mine behavioral characterizations for spyware. We then

discuss possible methods of evasion for our technique.

Finally, we present experimental data that demonstrates

that our detection technique is capable of effectively dis-

tinguishing malicious and benign components.

6 Dynamic Analysis Step

The basis for our detection technique, as discussed in the

previous sections, is to extract behavioral characteriza-

tions based on how spyware interacts with (i) the browser

and (ii) the underlying operating system in response to

events. To this end, we make use of both dynamic and

static analysis techniques.

The goal of the dynamic analysis step is twofold. First,

it has to monitor the interaction of the component with

the browser and record all the browser’s COM functions

that are invoked in response to events. Second, it has

to determine the code regions that are responsible for

handling events, thereby providing the necessary start-

ing points for the static analysis step. These tasks are

accomplished with the help of three core elements.

The first element is a “fake” WebBrowser COM ob-

ject, which provides the component under analysis with

an environment similar to the one that would be present

when being hosted by an instance of Internet Explorer.

The second element is our COM object host application,

which properly instantiates all involved components and

sends the relevant browser events to the BHO or tool-

bar component under evaluation. The final element is

a program that traces the execution of our host applica-

tion to extract those code regions that handle the various

browser events that are delivered.

6.1 Recording Browser Function Calls

The “fake” WebBrowser and the host application provide

a controlled environment in which we can instantiate

a suspicious component, send events, and monitor the

component’s reaction. The purpose of the “fake” Web-

Browser COM object is to host the component under

analysis. This involves the provision of an environment

that is “convincing” to a BHO or toolbar. To this end, the

WebBrowser element must offer all Internet Explorer

functionality expected by the browser extensions. Oth-

erwise, a BHO or toolbar might fail during initialization,

preventing any further analysis. Therefore, the Web-

Browser COM object implements several key interfaces

expected by a BHO or toolbar. Most importantly,

it implements IConnectionPointContainer,

IConnectionPoint, and IWebBrowser2. The

two interfaces related to ConnectionPoint are

required so that a BHO or toolbar is able to notify our

WebBrowser COM object about its interest in receiving

events (using the IConnectionPoint::Advise()

function). The IWebBrowser2 interface is the main

interface used to interact with the browser. More

precisely, a browser component invokes the functions of

this interface to collect browsing information such as the

current page or URL and to influence browser behavior.

Since we are interested in the interaction between a

possible spyware component and the browser, we pay

particular attention to calls to the IWebBrowser2

interface.

The WebBrowser element also implements sev-

eral other interfaces that are expected by a toolbar.

These include IOleWindow, IInputObjectSite,

IOleCommandTarget, and IServiceProvider.

Note that implementing an interface does not necessar-

ily imply that it is necessary to faithfully simulate the

functionality of all its procedures. Instead, we usually

provide a stub for every function. This stub always re-

turns success and logs the invocation. However, for cer-

tain frequently-used functions (e.g., those that request

the document or the location of the current page), ap-

propriate objects are returned.

The host application provides the “glue” that will hold

the various components together. To this end, the pro-

gram registers the component under analysis with the

Windows operating system, initializes the COM library,

and instantiates both our WebBrowser and the BHO or

toolbar.

Before events can be sent to a component, its

SetSite method has to be called (with a pointer to

the IUnknown interface of our WebBrowser as an ar-

gument). If the component is actually interested in re-

ceiving events, it will respond by querying for the Web-

Browser’s IConnectionPoint interface and call its

Advise function. At his point, the host application can

obtain a reference to the IDispatch interface imple-

mented by the browser extension and start to send events.

Note that all events are delivered through a single func-

tion (the Invokemethod of the IDispatch interface),

using the first parameter of the function to indicate the

type of the event.

To be able to generate events that are as realistic as

possible, we recorded an actual event stream created by

Internet Explorer over the course of five days. To this

end, we developed our own BHO that logged all relevant

event information while the browser was used. These

events were then replayed to perform our dynamic tests.

6.2 Locating Event-Handling Code

Given the infrastructure to send browser events to a

Browser Helper Object or toolbar, the next task is to de-

termine the regions of the code that handle events. More-

over, we are interested in determining the separate code

regions associated with each event. Then, we can use

static analysis to extract the control flow graphs that cor-

respond to these events.

If each different type of event would be passed to a

separate function, the start address for the static analy-

sis process could be easily determined as the start ad-

dress of the respective function. Unfortunately, as men-

tioned in the previous section, all events are delivered

through the single Invoke function. Thus, if we were to

use the start address of the Invoke function, we would

be unable to determine which API calls are associated

with which events. To obtain the API calls made in re-

sponse to a specific event, we have to look deeper into

the component under analysis and find the first instruc-

tion in the code that is responsible for handling the event.

We call this instruction the first event-specific instruc-

tion. Of course, it is also possible that a component is

not interested in a certain event and provides no special

handling code. The execution typically runs through a

default path, ignoring the information contained in the

event. In this case, there is no event-specific code.

To determine the first event-specific instructions, we

collect execution traces of the BHO or toolbar when pro-

cessing different events. That is, we send one event of

each type to the component and record the correspond-

ing sequences of machine instructions that are executed

in response. To record the machine instruction traces, we

use the Windows Debug API [21]. The Windows Debug

API offers an interface that is comparable to the ptrace

mechanism provided by some UNIX implementations,

and it provides a parent process with complete control

over the execution of a child process. This includes the

possibility to read and write the registers as well the ad-

dress space of the child process, which allows one to set

breakpoints or run a process in single-step mode. By

switching to single-step mode before sending a browser

event, we can record each executed machine instruction

and obtain the desired traces.

The tracing component collects an execution trace for

each of the n events being analyzed. Then the applica-

tion performs a pairwise comparison between all traces.

The idea is to identify the first event-specific instruction

for each event by checking for the first instruction that is

unique to the corresponding trace. More formally, a trace

te for an event e can be considered as a string whose sym-

bols are the (addresses of the) instructions that are exe-

cuted. To identify the first event-specific instruction in

te, we determine the longest common prefixes between

te and all other traces ti : 0 ≤ i < n, e 6= i. Assuming

that the longest of the prefixes has a length of l, then the

(l + 1)st instruction in trace te is the first event-specific

one. The rationale behind this approach is that we search

for the first instruction for which the trace te deviates

from all other traces. As a consequence, when two or

more traces contain the same sequence of instructions,

then these traces have no event-specific instructions and

are considered to represent the default path (as the differ-

ent types of events had no influence on the execution).

Consider the example shown in Figure 1. Note that

in this case, we demonstrate the identification of event-

specific instructions using source code. However, the

real analysis is done on binary code. The figure shows

the traces generated for five events. As expected, the

correct event-specific instructions are found for the first

three events (line 4 for event A, line 6 for event B, and

line 8 for event C), while the last two events (D and E)

represent the default path. Note that even though the first

instruction in trace B that is different from trace A is on

line 5, there is a longer common sequence of this trace

with trace C (as well as D and E). Thus, the event-specific

instruction for event B is determined to be on line 6.

When collecting traces for Browser Helper Objects or

toolbars, only the instructions that are executed in the

context of the component itself are used to determine

event-specific instructions. Thus, we remove all instruc-

tions that belong to dynamically loaded libraries from the

traces. The reasons are twofold: First, we are interested

in finding the first unique instruction within the compo-

nent for the static analysis process. Second, a library can

contain initialization code that is executed when one of

its functions is used for the first time. This introduces

spurious deviations into the traces that do not correspond

to actual differences in the code executed by the BHO or

toolbar component.

In addition to restricting our analysis to code within

the BHO or toolbar, subsequent repetitions of identical

instruction sequences that are executed as part of a loop

are collapsed into a single instance of this sequence. The

reason is that we occasionally observed that the traces for

two events were identical before and after a loop, while

the loop itself was executed for a different number of

times in each case. This happened, for example, with a

spyware component that was going through an array of

identifiers to determine whether the current event (given

its identifier) should be processed. For different event

identifiers, the loop terminated after a different number

of iterations because the respective event identifiers were

found at different positions in the array. However, for

both traces execution continued on the same path for

a number of instructions until control flow eventually

branched into the event-specific parts. In such situations,

collapsing multiple loop iterations into one allows us to

identify the actual event-specific handling code.

7 Static Analysis Step

The goal of the static analysis step is to determine the

interaction of a BHO or toolbar component with the op-

erating system. To this end, we statically examine certain

code regions of a component for the occurrence of oper-

ating system calls.

Before the component is actually analyzed, we check

its API function import table for the occurrence of

calls relevant to the creation of threads or timers (e.g.,

CreateThread or SetTimer). As explained in Sec-

tion 4, if a component could launch threads or create

timers, we have to conservatively assume that any im-

ported API function can be invoked in response to an

event. In this case, no further analysis of the binary is

necessary because we can directly use the calls listed by

the function import table. When neither of these func-

tions is present, however, the static analysis step is re-

quired to identify those API functions that can be called

in response to events.

The first task of the static analysis step is to disassem-

ble the target binary and generate a control flow graph

from the disassembled code. A control flow graph (CFG)

is defined as a directed graph G = (V, E) in which

vertices u, v ∈ V represent basic blocks and an edge

e ∈ E : u → v represents a possible flow of control from

u to v. A basic block describes a sequence of instructions

without any jumps or jump targets in the middle. We use

IDA Pro [6] to disassemble the binary. Since IDA Pro is

a powerful disassembler that already provides compre-

hensive information about the targets of control flow in-

structions, the CFG can be generated in a straightforward

manner using a custom-written IDA Pro plug-in. Note

that if our detection technique were to be deployed in

1 : I n v o k e (e v e n t I)2 : {3 : i f (I = = A)4 : h a n d l e _ A (I) ;5 : e l s e i f (I = = B)6 : h a n d l e _ B (I) ;7 : e l s e i f (I = = C)8 : h a n d l e _ C (I) ;9 : r e t u r n ;1 0 : }
A B C D E1 1 1 1 12 2 2 2 23 3 3 3 34 5 5 5 56 7 7 789 9 9 9 91 0 1 0 1 0 1 0 1 0d e f a u l t t r a c e s

Figure 1: Dynamic traces for different types of events.

the general public, the disassembly and CFG generation

would be done using a custom disassembler optimized

for our task. During our experiments, we encountered a

number of spyware samples that were compressed with

UPX [16], a packer tool for executables. If this was the

case, we uncompressed the samples prior to performing

static analysis (using the available UPX unpacking util-

ity). Otherwise, IDA Pro would not be able to extract any

valid instructions.

Based on the CFG for the entire component, the next

step is to isolate those parts of the graph that are respon-

sible for handling events. In particular, we are interested

in all subgraphs of the CFG that contain the code to han-

dle the different events. To this end, we use the event-

specific addresses collected during dynamic analysis and

traverse the entire subgraph reachable from each of those

addresses. While traversing the graph, the static analy-

sis process inspects all instructions to identify those that

represent operating system calls. More specifically, we

make a list of all possible Windows API calls that can

be reached from each event-specific address. Finally, the

event specific lists are merged to obtain a list of all API

calls that are invoked in response to events. At this point,

the analysis process has collected all the information nec-

essary to characterize the component (i.e., browser COM

functions and Windows API calls executed in response to

events).

Note that while the Windows API is the common way

to invoke Microsoft Windows services, current versions

of Windows (starting with Windows NT and its suc-

cessors) also offer a lower-level interface. This inter-

face is called the Windows NT Native API, and it can

be compared to the system call interface on UNIX sys-

tems. Both the Native API kernel interface and the Win-

dows API are offered to accommodate the micro-kernel

architecture of Windows. That is, instead of providing

one single operating system interface, Windows NT of-

fers several different operating system interfaces (e.g.,

OS/2, DOS, POSIX). This allows one to execute applica-

tions that were developed for different operating systems.

The different OS interfaces are implemented by different

operating environment subsystems, which are essentially

a set of system-specific APIs implemented as DLLs that

are exported to client programs. All subsystems are lay-

ered on top of the Native API, with the Windows API

being the most popular subsystem. Because applications

typically use the Windows API and not the Native API,

we monitor calls to the Windows API to capture the be-

havior of components under analysis. However, to as-

sure that no spyware can bypass our detection technique

by relying directly on the Native API, any direct access

to this interface is automatically characterized as suspi-

cious.

8 Evading Detection

In this section, we discuss the limitations of our detec-

tion technique. In particular, we explore possible mech-

anisms that a spyware author can use to evade detection

and countermeasures that can be taken in order to prevent

such evasion.

Before revisiting our technique, it is important to note

that due to the nature of the component object model

a component that “plugs” into our WebBrowser com-

ponent must use the interfaces it exposes (or the ones

it expects Internet Explorer to expose) in order to ex-

tract information about the user at runtime. These in-

terfaces are well documented and are essentially a con-

tract between the COM client and the COM server. Since

we control our WebBrowser component, we see all the

interface calls and the queries for different interfaces.

Just as our a priori list of suspicious Windows API

calls is subject to change as we discover new suspicious

calls, so are the various COM functions and interfaces

used. This contract also applies to events. If a com-

ponent wants to receive events from the WebBrowser

it must call the Advise function on the WebBrowser’s

IConnectionPoint interface. Since we are in con-

trol of our WebBrowser object we can monitor calls to

this interface and reliably discover if a component is in-

terested in events and, if it is, the address of the function

that handles those events.

Recalling our behavioral characterization of spyware,

we note that a BHO or toolbar component must both col-

lect user data via browser functions and leak this infor-

mation to the adversary via Windows API calls. Thus, to

evade detection, a malware author could either attempt to

hide the fact that the BHO monitors user data via browser

COM calls, or disguise the fact that the collected data is

leaked.

Covering the footprints that indicate user data is being

collected is likely the more difficult task. We use dy-

namic analysis to monitor all the functions that the BHO

component invokes in our web browser. To avoid invok-

ing the browser functions, a spyware component could

attempt to read interesting user data directly from mem-

ory. This is possible because both the BHO and the web

browser share the same address space. However, this is

difficult because a non-standard access to memory re-

gions in a complex and undocumented COM application,

such as Internet Explorer, is not likely to yield a robust

or portable monitoring mechanism. Thus, reading data

directly from memory is not considered to be a viable

approach.

A more promising venue for a spyware component to

evade our detection is to attempt to conceal the fact that

data is leaked to a third-party via API calls. We have

previously mentioned the possible existence of covert

channels, and concluded that their treatment is outside

the scope of this paper. However, a spyware component

could attempt to leak information using means other than

API calls, or it could prevent the static analysis process

from finding their invocations in the code of the BHO.

One possible way to leak information without using

the Windows API is to make use of the functionality of-

fered by Internet Explorer itself. For example, a spy-

ware component could use the Internet Explorer API to

request a web resource on a server under the control of

the attacker. Sensitive information could be transmitted

as a parameter of the URL in this request. The current

limitation of not taking browser calls into account can

be addressed in two ways. First, we could extend the

static analysis step to also flag certain COM calls to the

browser as suspicious. The problem with this solution

is that COM calls are invoked via function pointers and,

thus, are not easily resolvable statically. The second pos-

sibility would be to extend the dynamic analysis step. We

already record the browser functions that a BHO invokes

to determine when user data could be leaked. Thus, it

would be straightforward to additionally take into con-

sideration browser calls that a component invokes after

user data has been requested. However, for this, one has

to enlarge the set of test inputs used for the dynamic anal-

ysis step to ensure better test coverage.

As mentioned previously, another evasion venue is to

craft the BHO code such that it can resist static analy-

sis. Static analysis can be frustrated by employing anti-

disassembling mechanisms [13], or code obfuscation. If

these techniques are used, then our static analysis step

could be forced into missing critical Windows API calls

that must be recognized as suspicious. Again, we have

two options to deal with this problem. First, the static

analysis step could be made more robust to tolerate ob-

fuscation (e.g., by using a disassembler that handles anti-

disassembler transformations [12]). Also, strong obfus-

cation typically leads to disassembly errors that in itself

can be taken as sufficient evidence to classify a compo-

nent as spyware. A second approach is to expand the dy-

namic analysis step to also monitor Windows API func-

tions. This could be achieved by hooking interesting API

calls [10] before the spyware component is executed. Us-

ing these hooks, all Windows API calls made by the spy-

ware component could be observed. Again, the set of test

data would have to be enlarged to improve test coverage.

While there are a number of possible ways that a spy-

ware component could attempt to evade our current de-

tection system, we have shown how to counter these

threats. Furthermore, in the next section we show how

in its current form our system was successful in correctly

identifying all spyware components that we were able

to collect. Thus, our proposed techniques significantly

raise the bar for spyware authors with respect to tradi-

tional signature based techniques.

9 Evaluation

In order to verify the effectiveness of our behavior-based

spyware detection technique, we analyzed a total of 51

samples (33 malicious and 18 benign); 34 of them were

BHOs and 17 were toolbars. The process of collecting

these samples in the “wild” is both a tedious and non-

trivial task. This is confirmed by a recent study [3] in

which the authors traversed 18,237,103 URLs discov-

ering 21,200 executables, of which there were just 82

unique instances of spyware as identified by popular spy-

ware scanners. The problem is further exacerbated by the

fact that popular spyware dominates the set of infected

files, making it hard to obtain a well rounded collection.

Thus, we obtained all of the malicious samples in our fi-

nal test set from an anti-virus company and collected all

of the benign samples from various shareware download

sites. Note that we picked all samples (benign and mali-

cious) that we collected and that either registered them-

selves as BHOs or as toolbars. While collecting the be-

nign samples, we verified that the applications were in-

deed benign by checking both anti-spyware vendor and

software review web sites. Furthermore, we selected

samples from different application areas, including anti-

spyware utilities, automated form-fillers, search toolbars,

and privacy protectors. Note that our tool was developed

while analyzing only seven (two benign and five mali-

cious) samples from our final test set. The remaining

samples were effectively unknown, with respect to our

tool, thereby validating the effectiveness of our charac-

terization on new and previously unseen malware com-

ponents. Given the difficulty of collecting samples, we

consider this to be a well rounded and significant sample

set with which to evaluate our technique.

Table 1 presents our detection results in terms of both

correctly and incorrectly classified samples. In addition

to the detection results for our proposed combined ap-

proach, this table also includes the results that are achiev-

able when taking into account the information provided

by only the static analysis or only the dynamic analy-

sis step. In particular, we show detection results when

the classification is solely based on statically analyzing

all API calls invoked by the sample (Strategy 1) or only

those API calls in response to events (Strategy 2). More-

over, we present the results obtained when a BHO or

toolbar sample is classified as spyware if it subscribes to

browser events (Strategy 3) or solely based on its inter-

action with the browser via COM functions (Strategy 4).

Finally, Strategy 5 implements our proposed detection

technique, which uses a composition of static and dy-

namic analysis. The aim is to demonstrate that the com-

bined analysis is indeed necessary to achieve the best re-

sults.

Given our detection results, it can be seen that mali-

cious spyware samples are correctly classified by all five

strategies, even the most simple one. Since every strat-

egy focuses on the identification of one behavioral aspect

present in our characterization of spyware, these results

indicate that the proposed characterization appears to ac-

curately reflect the actual functioning of spyware. How-

ever, simple strategies also raise a significant number of

false alarms. The reason is that certain behavioral as-

pects of spyware are also exhibited by benign samples. In

the following paragraphs, we discuss in more detail why

different detection strategies incorrectly classify certain

samples as malicious. The discussion sheds some light

on the shortcomings of individual strategies and moti-

vates the usage of all available detection features.

As mentioned in Section 4, we need a list of Win-

dows API calls that contains all suspicious functions that

can be used by a spyware component to leak informa-

tion to the attacker. As a first step, we manually assem-

bled this list by going through the Windows API calls, in

particular focusing on functions responsible for handling

network I/O, file system access, process control, and the

Windows registry. Figure 2 shows an excerpt of the 59

suspicious calls that were selected. The calls that are de-

picted are representative of commonly used registry, file

access, and networking functions.

The first detection strategy (Strategy 1) uses the list of

suspicious API functions to statically detect spyware. To

this end, static analysis is used to extract all API calls

that a sample could invoke, independent of events. This

can be done in a straightforward fashion, using available

tools such as PEDump [18]. Then, the extracted API

calls are compared to the list of suspicious functions. A

sample is classified as spyware if one or more of the sam-

ple’s API calls are considered suspicious.

Using the first strategy, all benign samples are incor-

rectly detected as spyware. In many cases, samples re-

quire Windows registry, file, or network access during

the startup and initialization phase. In other cases, be-

nign samples such as the Google search toolbar use sus-

picious calls such as InternetConnectA to connect

to the Internet (in the case of the Google toolbar, the sam-

ple sends search queries to Google). However, such calls

are typically not done in response to events; in fact, many

samples do not even register for browser events.

If we restrict the static analysis to only those Win-

dows API calls that are invoked in response to browser

events, only five of the 18 benign samples are incorrectly

classified (Strategy 2). Two of these false positives are

easy to explain. One is a BHO called Airoboform,

a tool that supports users by filling in web forms auto-

matically. In response to every event that signals that

a new page is loaded, this tool scans the page for web

forms. If necessary, it loads previously provided content

from a file to fill in forms or it stores the current form

content to this file. Because web forms can also contain

sensitive information (such as passwords), one can argue

that Airoboform actually behaves in a way that is very

similar to a spyware application. The only exception is

that in the case of spyware, the file content would prob-

ably be transmitted to an attacker through an additional

helper process.

Besides Airoboform, the benign Privacy

Preferences Project (P3P) Client BHO

also exhibits spyware-like behavior. P3P is emerging

as an industry standard for providing a simple and

automated way for users to control the use of their

personal information on web sites they visit. To this end,

the P3P Client has to check the P3P settings of every

web page that is visited. More precisely, whenever the

user visits a web site, the BHO connects to that site and

tries to retrieve its P3P-specific privacy policy. This is

implemented by opening a connection via the Windows

API function InternetConnectA in response to the

event that indicates that a document has been loaded.

Two other false positives are Spybot and the

T-Online toolbar. In both cases, the static analysis re-

Detection Strategy Spyware Components Benign Components

Correct Incorrect Correct Incorrect

1. All Windows API calls (static) 33 0 0 18

2. Windows API calls in response to events (static) 33 0 13 5

3. Subscription to browser events (dynamic) 33 0 10 8

4. Browser COM method invocations (dynamic) 33 0 15 3

5. Combined static and dynamic analysis 33 0 16 2

Table 1: Results for different detection strategies.

Figure 2: Excerpt of a priori assembled list of suspicious Windows API calls.

sults indicate that a suspicious WriteFile call could

be invoked in response to some events. This would allow

the browser extensions to write event-specific informa-

tion into a file for later retrieval. Although writes to a

file are generally suspicious in response to events, there

are also cases in which such an action is legitimate. For

example, we discovered that the T-Online toolbar, a

benign application that allows users to send SMS mes-

sages, uses a caching mechanism to store images in files.

Spybot, a benign anti-spyware application, uses black

lists to block web access to spyware distribution sites

and keeps a cache to track cookies. The fifth false posi-

tive is Microgarden, a BHO that extends Internet Ex-

plorer with the ability to open multiple tabs in a single

browser window. Although no suspicious API calls are

invoked directly in response to events, this BHO makes

use of timers. As a result, we have to conservatively con-

sider all Windows API calls that this sample can possibly

call (among which, a number of suspicious functions are

found). The last three false positive examples suggest

that the static analysis of Windows API calls may not de-

liver optimal detection results. Instead, one should seek

to combine the results of our static analysis with those of

our dynamic analysis to lower the number of false posi-

tives.

Taking a step back, a simple dynamic technique to

identify spyware (Strategy 3) is to classify all BHO and

toolbar components as malicious if they register as event

sinks. As expected, all of the spyware samples receive

browser events from Internet Explorer to monitor user

behavior. In comparison, only eight of the 18 benign

samples registered as event sinks. This observation sug-

gests that many benign applications use BHO and toolbar

extensions to improve Internet Explorer, but do not need

to listen to events to implement their functionality. On

the other hand, nearly half of the benign samples also

use event information, for example, to display or modify

the source of visited pages or to block pop-up windows.

For Strategy 4, the dynamic analysis is extended to

monitor the interaction of the BHO or toolbar with the

web browser. As mentioned previously, this is realized

by recording the invocation of COM functions provided

by the IWebBrowser2 interface. To compile the list of

suspicious COM functions, we analyzed this interface for

functions that allow a browser extension to obtain infor-

mation about the page or the location that a user is visit-

ing. The complete list is shown in Figure 3. Of particular

interest is the get Document() method, which pro-

vides an IHTMLDocument2 pointer to the Document

Object Model (DOM) object of the web page that is be-

ing displayed. Using this pointer, a BHO or toolbar can

modify a page or extract information from its source.

Using the list of suspicious COM functions, dynamic

analysis classifies a sample as spyware when at least

one invocation of a suspicious function is observed in

response to events. Unfortunately, this also results in

Figure 3: A priori assembled list of suspicious COM browser functions.

more false positives than necessary. The reason is that

several browser extensions interact with the browser in

response to events. For example, the Lost Goggles

toolbar requests a pointer to the DOM object of a loaded

page to integrate thumbnails into search results returned

by Google.

In our characterization of spyware, we claim that a ma-

licious component both monitors user behavior and leaks

this information to the environment. Thus, we expect the

lowest number of false positives when employing a com-

bination of dynamic and static analysis techniques. This

is indeed confirmed by the detection results shown in Ta-

ble 1 for Strategy 5. Compared to the results delivered

by static analysis only, the misclassification of the be-

nign Spybot and T-Online samples is avoided. The

reason for this is that although these browser extensions

might invoke a WriteFile API call in response to an

event, the dynamic analysis confirms that they are not

monitoring user behavior by calling any of the suspicious

COM functions. Microgarden is also correctly clas-

sified as benign. Even though this toolbar uses timers, it

does not access any relevant information in response to

events. Airoboform and P3P Client, on the other

hand, are still classified as spyware. The reason is that in

addition to suspicious API calls, they also request the lo-

cation of loaded pages via the get LocationURL()

function. However, as discussed previously, this is no

surprise as these BHOs do indeed monitor surfing be-

havior and store (possibly sensitive) user information in

files.

Table 2 shows the various execution times for each

step in the analysis on a 1.7 GHz Pentium M proces-

sor with 1 GB of RAM. The execution time for dynamic

analysis may be slower than one might expect. This is

due to the fact that this analysis must be done in a vir-

tual environment because we must execute the possibly

malicious code. Furthermore, once this code is invoked

the performance of the machine tends to degrade signif-

icantly. The execution time for static analysis, on the

other hand, is split in two. This is because the running

time for static analysis is highly dependent on how many

events a sample is listening for. Thus, we give the execu-

tion time for disassembly and CFG creation along with a

separate measure for the execution time to analyze a sin-

gle event. We consider these performance measures to

be acceptable for a prototype analysis tool and note that

the running times could be significantly improved with

optimization.

9.1 API Call Blacklist Derivation

Until now, we have been using lists of suspicious Win-

dows API calls and suspicious COM functions that were

generated a priori. An alternate method, as discussed

in Section 4, is to generate these lists automatically.

More precisely, by applying our approach to both a set

of known benign samples and a set of known malicious

samples, one can cross-reference the two resulting sets

of calls made in response to browser events (from both

static and dynamic analysis), to identify calls that are

frequently observed for spyware, but never observed for

benign BHOs or toolbars.

The major benefit of the automatic list generation ap-

proach is that it obviates the need to generate a list of

suspicious calls a priori. Also, over time, as more sam-

ples are collected and analyzed, the list will become more

refined, eliminating those calls that show up only in ma-

licious samples by chance, and revealing new functions

that were not considered before. These results are useful

even in the case where one uses a list of calls generated

a priori as the basis for detection, because there are a

plethora of Windows API calls to consider, and the anal-

ysis can be used to update the “suspicious function” list

with new calls as they begin to be utilized by spyware.

In the following, we briefly discuss our experience

when automatically generating the list of suspicious

Windows API functions. We refrained from applying au-

tomatic generation to the list of suspicious browser COM

functions. The reason is that the IWebBrowser2COM

interface contains considerably less functions than the

Windows API and these functions are well-documented,

making this list more suitable for a priori compilation.

Figure 4 shows an excerpt of where the Windows API

list we generated a priori and the list we generated auto-

matically converged (a), as well as some additional ma-

licious API calls that were discovered (b). These lists

do indeed match up well with our initial intuition. In-

terestingly, new calls that we did not originally consider,

such as CreateToolHelp32Snapshot, which takes

a snapshot of the processes currently running on a sys-

tem and should probably not be called in response to

browser events, can be added to the list of possibly ma-

Analysis Step Execution Time

Mean Standard Deviation

1. Dynamic Analysis 30.97s 21.61s

2. Static Analysis (disassembly and CFG generation) 64.86s 137.94s

3. Static Analysis (per event CFG analysis) 80.01s 100.01s

Table 2: Performance for different analysis steps.

Figure 4: Excerpts of extracted calls that (a) also appear in the a priori list and (b) are unique to the automatically

derived list.

licious calls. The results indicate that our static list does

a good job of detecting spyware, while our generated list

can be used to further improve detection results as spy-

ware authors try to adapt in order to evade detection.

Automated list generation, however, is not without its

drawbacks. The reason is that we will likely be remov-

ing certain calls that do represent possible malicious in-

tent. For example, when applied to our evaluation set,

one of these calls would be the Windows API function

WriteFile. Because WriteFile appears in both our

benign and malicious sets of samples, we would disre-

gard it as a common call that should not be taken into ac-

count when analyzing new and possibly malicious sam-

ples. This should reduce the number of false positives,

but at the same time, it could result in an increase in the

number of false negatives.

10 Conclusions and Future Work

Spyware is becoming a substantial threat to networks

both in terms of resource consumption and user privacy

violations. Current anti-spyware tools predominately use

signature-based techniques, which can easily be evaded

through obfuscation transformations.

In this paper, we present a novel characterization for

a popular class of spyware, namely those components

based on Browser Helper Objects (BHOs) or toolbars

developed for Microsoft’s Internet Explorer. This char-

acterization is based on the observation that a spyware

component first obtains sensitive information from the

browser and then leaks the collected data to the outside

environment. We developed a prototype detection tool

based on our characterization that uses a composition of

dynamic and static analysis to identify the browser COM

functions and the Windows API calls that are invoked

in response to browsing events. Based on this informa-

tion, we are able to identify an entire class of spyware,

thus making our approach more powerful than standard

signature based techniques. In addition, our technique

will provide a forensic analyst with detailed information

about the behavior of unknown browser helper objects

and toolbars.

Our approach was evaluated on a large test set of spy-

ware and benign browser extensions. The results demon-

strate that the approach is able to effectively identify

the behavior of spyware programs without any a pri-

ori knowledge of the programs’ binary structure, signif-

icantly raising the bar for malware authors who want to

evade detection.

Future work will focus on extending our approach to

spyware programs that do not rely on the Browser Helper

Object or toolbar interfaces to monitor the user’s behav-

ior. We also plan to extend our characterization with

more sophisticated data-flow analysis that would allow

one to characterize the type of information accessed (and

leaked) by the spyware program. This type of character-

ization would enable a tool to provide an assessment of

the level of “maliciousness” of a spyware program.

Acknowledgments

This research was supported by the Austrian Science

Foundation (FWF), under grant No. P18157, the Se-

cure Business Austria competence center, the U.S. Army

Research Office, under agreement DAAD19-01-1-0484,

and by the National Science Foundation, under grants

CCR-0238492 and CCR-0524853.

References

[1] A hidden menace. The Economist, June 2004.

[2] Ad-Aware. http://www.lavasoftusa.

com/software/adaware/, 2005.

[3] Steven D. Gribble Alexander Moshchuk,

Tanya Bragin and Henry M. Levy. A Crawler-

Based Study of Spyware on the Web. In Pro-

ceedings of the Annual Network and Distributed

System Security Symposium (NDSS), San Diego,

CA, February 2006.

[4] M. Christodorescu and S. Jha. Testing Malware De-

tectors. In Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and

Analysis (ISSTA 2004), pages 34–44, Boston, MA,

July 2004.

[5] M. Christodorescu, S. Jha, S. A. Seshia, D. Song,

and R.E. Bryant. Semantics-Aware Malware Detec-

tion. In Proceedings of the 2005 IEEE Symposium

on Security and Privacy (Oakland 2005), Oakland,

CA, USA, May 2005.

[6] Data Rescure. IDA Pro: Disassembler and

Debugger. http://www.datarescue.com/

idabase/, 2005.

[7] Earthlink and Webroot Release Second SpyAu-

dit Report. http://www.earthlink.net/

about/press/pr_spyAuditReport/, June

2004.

[8] Aaron Hackworth. Spyware. US-CERT publica-

tion, 2005.

[9] Jan Hertsens and Wayne Porter. Anatomy of a

Drive-By Install- Even on Firefox. http://www.

spywareguide.com/articles/anatomy_

of_a_drive_by_install__72.%html,

2006.

[10] Galen Hunt and Doug Brubacher. Detours: Binary

Interception of Win32 Functions. In Proceedings

of the 3rd USENIX Windows NT Symposium, pages

135–144, Seattle, WA, 1999.

[11] C. Kruegel, W. Robertson, and G. Vigna. Detect-

ing Kernel-Level Rootkits Through Binary Analy-

sis. In Proceedings of the Annual Computer Secu-

rity Applications Conference (ACSAC), pages 91–

100, Tucson, AZ, December 2004.

[12] C. Kruegel, F. Valeur, W. Robertson, and G. Vigna.

Static Analysis of Obfuscated Binaries. In Proceed-

ings of the Usenix Security Symposium, 2004.

[13] C. Linn and S. Debray. Obfuscation of Executable

Code to Improve Resistance to Static Disassembly.

In ACM Conference on Computer and Communica-

tions Security (CCS), 2003.

[14] Microsoft. Windows AntiSpyware (Beta):

Analysis approach and categories. http:

//www.microsoft.com/athome/

security/spyware/software/isv/

analysis.%mspx, March 2005.

[15] Known Vulnerabilities in Mozilla Products.

http://www.mozilla.org/projects/

security/known-vulnerabilities.

html, 2006.

[16] M. Oberhumer and L. Molnar. UPX: Ulti-

mate Packer for eXecutables. http://upx.

sourceforge.net/, 2004.

[17] V. Paxson. Bro: A System for Detecting Network

Intruders in Real-Time. In Proceedings of the 7th

USENIX Security Symposium, San Antonio, TX,

January 1998.

[18] M. Pietrek. Peering Inside the PE: A Tour of the

Win32 Portable Executable File Format. Microsoft

Systems Journal, March 1994.

[19] M. Roesch. Snort - Lightweight Intrusion Detection

for Networks. In Proceedings of the USENIX LISA

’99 Conference, Seattle, WA, November 1999.

[20] S. Saroiu, S.D. Gribble, and H.M. Levy. Measure-

ment and Analysis of Spyware in a University En-

vironment. In Proceedings of the ACM/USENIX

Symposium on Networked Systems Design and Im-

plementation (NSDI), San Francisco, CA, March

2004.

[21] S. Schreiber. Undocumented Windows 2000 Se-

crets: A Programmer’s Cookbook. Addison-

Wesley Professional, 2001.

[22] Spybot Search & Destroy. http://www.

safer-networking.org/, 2005.

[23] R. Thompson. Why Spyware Poses Multiple

Threats to Security. Communications of the ACM,

48(8), August 2005.

[24] Y. Wang, R. Roussev, C. Verbowski, A. John-

son, M. Wu, Y. Huang, and S. Kuo. Gate-

keeper: Monitoring Auto-Start Extensibility Points

(ASEPs) for Spyware Management. In Proceed-

ings of the Large Installation System Administra-

tion Conference (LISA), Atlanta, GA, November

2004. USENIX.

[25] S. Willliams and C. Kindel. The Component Object

Model: A Technical Overview. Microsoft Techni-

cal Report, October 1994.

[26] Onload XPI installs should be blocked by de-

fault. https://bugzilla.mozilla.org/

show_bug.cgi?id=238684, 2004.

