
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Buffer Overflows

Secure Software Programming 3

Automation Systems Group

Overview

• Security issues at various stages of application life-cycle

– mistakes, vulnerabilities, and exploits

– avoidance, detection, and defense

• Architecture

– security considerations when designing the application

• Implementation

– security considerations when writing the application

• Operation

– security considerations when the application is in production

Secure Software Programming 4

Automation Systems Group

Implementation Stage

• Mistakes done while writing code

– coding flaws because of

• unfamiliarity with language

• ignorance about security issues

• unwillingness to take extra effort

• Often related to particular programming language

• Buffer overflows

– mostly relevant for C / C++ programs

– not in languages with automatic memory management

– these use

• dynamic bounds checks (e.g., Java)

• automatic resizing of buffers (e.g., Perl)

Secure Software Programming 5

Automation Systems Group

Buffer Overflows

• Goal

– change flow of control (flow of execution), and

– execute arbitrary code

• Requirements

1. inject attack code or attack parameters

2. abuse vulnerability and modify memory such that

control flow is redirected

• Change of control flow

– alter a code pointer (i.e., value that influences program counter)

– change memory region that should not be accessed

Secure Software Programming 6

Automation Systems Group

Buffer Overflows

• One of the most used attack techniques

• Advantages

– very effective

• attack code runs with privileges of exploited process

– can be exploited locally and remotely

• interesting for network services

• Disadvantages

– architecture dependent

• directly inject assembler code

– operating system dependent

• use call system functions

– some guess work involved (correct addresses)

Secure Software Programming 7

Automation Systems Group

Buffer Overflows

• Process memory regions

– Stack segment

• local variables

• procedure calls

– Data segment

• global (static) variables (bss)

• dynamic variables (heap)

– Code (Text) segment

• program instructions

• usually read-only

Stack

Heap

Code

Top of

Memory

BSS

Secure Software Programming 8

Automation Systems Group

Buffer Overflows

• Overflow memory region on the stack

– overflow function return address

• Phrack 49 -- Aleph One: Smashing the Stack for Fun and Profit

• Phrack 58 -- Nergel: The advanced return-into-lib(c) exploits

– overflow function frame (base) pointer

• Phrack 55 -- klog: The Frame Pointer Overflow

– overflow longjump buffer

• Overflow (dynamically allocated) memory region on the heap

– Phrack 57 -- MaXX: Vudo malloc tricks

-- anonymous: Once upon a free() ...

• Overflow function pointers

– stack, heap, BSS (e.g., PLT)

Secure Software Programming 9

Automation Systems Group

Stack

• Usually grows towards smaller memory addresses

– Intel, Motorola, SPARC, MIPS

• Processor register points to top of stack

– stack pointer – SP

– points to last stack element or first free slot

• Composed of frames

– pushed on top of stack as consequence of function calls

– address of current frame stored in processor register

• frame/base pointer – FP

– used to conveniently reference local variables

Secure Software Programming 10

Automation Systems Group

Stack

previous frame

function arguments

return address

previous frame pointer

local variables
stack pointer

frame pointer

current frame

caller code

1. push arguments

2. call instruction

callee code

1. push frame pointer

2. move stack pointer to frame pointer

3. increase stack pointer

Secure Software Programming 11

Automation Systems Group

Buffer Overflow

• Code (or parameters) get injected because

– program accepts more input than there is space allocated

• In particular, an array (or buffer) has not enough space

– especially easy with C strings (character arrays)

– plenty of vulnerable library functions

strcpy, strcat, gets, fgets, sprintf ..

• Input spills to adjacent regions and modifies

– code pointer or application data

• all the possibilities that we have enumerated before

– normally, this just crashes the program (e.g., sigsegv)

Secure Software Programming 12

Automation Systems Group

Buffer Overflow

• Simple buffer overflow

1. create executable content, and

2. set code pointer to point to this content

• Effect

– causes a jump to code under our control

– successfully modifies execution flow

– have this code executed with privileges of running process

– difficult to generate correct “payload“

– different variations for different platforms, and

• assembly instructions, alignment

– different operating systems

• system calls

Secure Software Programming 13

Automation Systems Group

Buffer Overflow

• Advanced buffer overflow

1. set up function parameters, and

2. set code pointer to point to existing code

• Effect

– causes a jump to existing code with chosen arguments

– also successfully modifies execution flow, but

– cannot execute arbitrary code

Secure Software Programming 14

Automation Systems Group

Buffer Overflow

• Executable content (called shell code)

– usually, a shell should be started

• for remote exploits - input/output redirection via socket

– use system call (execve) to spawn shell

• System calls

– mechanism to ask operating system for services

– transition from user mode to kernel mode

– different implementations

• Linux system calls

– invoked by

• passing arguments in registers (or on the stack) and

• calling 0x80 interrupt

Secure Software Programming 15

Automation Systems Group

Shell Code

void main(int argc, char **argv) {

char *name[2];

name[0] = “/bin/sh“;

name[1] = NULL;

 execve(name[0], &name[0], &name[1]);

 exit(0);

}

int execve(char *file, char *argv[], char *env[])

• file is name of program to be executed

“/bin/sh“

• argv is address of null-terminated argument array

“/bin/sh“, NULL

• env is address of null-terminated environment array

NULL

Secure Software Programming 16

Automation Systems Group

Shell Code

• file parameter

– we need the null terminated string /bin/sh somewhere in
memory

• argv parameter

– we need the address of the string /bin/sh somewhere in
memory,

– followed by a NULL word

• env parameter

– we need a NULL word somewhere in memory

– we will reuse the null pointer at the end of argv

Secure Software Programming 17

Automation Systems Group

Shell Code

• execve arguments

located at address addr

/bin/sh0addr0000

file -- null-terminated string

arg -- pointer to address of null-terminated string

env -- pointer to null-word

Secure Software Programming 18

Automation Systems Group

Shell Code

• Spawning the shell in assembly

1. move system call number (0x0b) into %eax

2. move address of string /bin/sh into %ebx

3. move address of the address of /bin/sh into %ecx (using lea)

4. move address of null word into %edx

5. execute the interrupt 0x80 instruction

Secure Software Programming 19

Automation Systems Group

Shell Code

• Problem – position of code in memory is unknown

– how to determine address of stringaddress of string

– we can make use of instructions using relative addressing

• call instruction saves IP on the stack and jumps

• Idea

– jmp instruction at beginning of shell code to call instruction

– call instruction right before /bin/sh string

– call jumps back to first instruction after jump

– now address of /bin/sh is on the stack

Secure Software Programming 20

Automation Systems Group

Shell Code

popl %esi

jmp call_addr

Shell Code

call jmp_addr + 1

/bin/sh0000

%esi holds address

of string /bin/sh

call_addr

jmp_addr

Secure Software Programming 21

Automation Systems Group

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shell code

Secure Software Programming 22

Automation Systems Group

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shell code

OverflowOverflow

Secure Software Programming 23

Automation Systems Group

Pulling It All Together

previous frame

function arguments

new code pointer

shell code

Secure Software Programming 24

Automation Systems Group

Shell Code

• Shell code is usually copied into a string buffer

• Problem

– any null byte would stop copying

! null bytes must be eliminated

" Substitution

mov 0x0, reg ! xor reg, reg

mov 0x1, reg ! xor reg, reg

 inc reg

e.g. movl 0x0, %eax ! xor %eax, %eax

Secure Software Programming 25

Automation Systems Group

Code Pointer

• Code pointer

– e.g., return address in stack frame

– must be overwritten with correct value

– start of exploit code (jmp)

– it has to be guessed (must be very precise)

• Hints

– stack starts at same address for every programm

– can be obtained by function
unsigned long get_sp(void) {

__asm__(“movl %esp, %eax“);

}

Secure Software Programming 26

Automation Systems Group

Code Pointer

• NOP (no operation) sledge

– series of NOP (0x90) (no operation) instructions at the

beginning of exploit code

– return address must not be as precise anymore

– it is enough to hit the NOP sledge

– can also be obfuscated via instruction substitution to make

detection more difficult (e.g., ADMmutate)

Secure Software Programming 27

Automation Systems Group

Code Pointer

previous frame

function arguments

new code pointer

shell code

NOP sledge

any return address into theany return address into the

NOP sledge succeedsNOP sledge succeeds

Secure Software Programming 28

Automation Systems Group

Small Buffers

• Buffer can be too small to hold exploit code

• Store exploit code in environmental variable

– environment stored on stack

– return address has to be redirected to environment variable

• Advantage

– exploit code can be arbitrary long

• Disadvantage

– access to environment needed

Secure Software Programming 29

Automation Systems Group

setjmp() and longjmp()

• Used in C / C++

• Non-local / inter-procedural ”goto”

• Example usage

– Error handling

– User-space threading

Secure Software Programming 30

Automation Systems Group

setjmp() and longjmp()

int main() {

 jmp_buf env;

 int i;

 if (setjmp(env) != 0) {

 printf(”i = %d\n", i);

 exit(0);

 }

 else {

 printf(”i = %d\n", i);

 f1(env);

 }

 return 0;

}

void f2(jmp_buf e) {

 if (check == error) {

 longjmp(e, ERROR2);

 /* unreachable */

 }

 else

 return;

}

void f1(jmp_buf e) {

 if (check == error) {

 longjmp(e, ERROR1);

 /* unreachable */

 }

 else

 f2(e);

}

Secure Software Programming 31

Automation Systems Group

setjmp() and longjmp()

• Linux implementation

typedef int __jmp_buf[6];

define JB_BX 0

define JB_SI 1

define JB_DI 2

define JB_BP 3

define JB_SP 4

define JB_PC 5

define JB_SIZE 24

/* Calling environment, plus possibly a saved signal mask. */

typedef struct __jmp_buf_tag

 {

 __jmp_buf __jmpbuf; /* Calling environment. */

 int __mask_was_saved; /* Saved the signal mask? */

 __sigset_t __saved_mask; /* Saved signal mask. */

 } jmp_buf[1];

Secure Software Programming 32

Automation Systems Group

setjmp() and longjmp()

• Linux implementation

longjmp(env, i) ->

movl i, %eax /* return i */

movl env.__jmpbuf[JB_BP], %ebp /* restore base ptr */

movl env.__jmpbuf[JB_SP], %esp /* restore stack ptr */

jmp (env.__jmpbuf[JB_PC]) /* jump to stored PC */

Secure Software Programming 33

Automation Systems Group

setjmp() and longjmp()

• Required vulnerable sequence

– setjmp()

– Unchecked read to buffer below jmp_buf

– longjmp()

• Exploit steps

1. Inject shell code at known address

2. Overflow jmp_buf

• Set target PC value to start of shell code

• Set stored BP, SP such that shell code has legal memory area

for stack operations

Secure Software Programming 34

Automation Systems Group

Summary

• Buffer overflows

– implementation flaw

– occur when an application receives more input than there is space
allocated for this input

• Exploit steps

– inject shell code or parameters

• practical issues

– locate shell code in memory, NULL bytes, NOP sledge

– change code pointer

• Code pointer

– various possibilities to change

• return address, frame pointer, jump buffer, function pointer

