
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Heap Buffer Overflows

and

Format String Vulnerabilities

Secure Software Programming 3

Automation Systems Group

Overview

• Security issues at various stages of application life-cycle

– mistakes, vulnerabilities, and exploits

– avoidance, detection, and defense

• Architecture

– security considerations when designing the application

• Implementation

– security considerations when writing the application

• Operation

– security considerations when the application is in production

Secure Software Programming 4

Automation Systems Group

Buffer Overflow

• Vulnerable buffer can be located

– on the stack

– on the heap

– in static data areas

• Redirect execution flow by modifying

– stack frames

– longjump buffers

– function pointers

! what can be done when overflowing a buffer on the heap?

Secure Software Programming 5

Automation Systems Group

Heap Buffer Overflow

• Overflowing dynamically allocated memory

• Dynamically allocated memory

– managed by a heap manager

• Heap manager

– handles memory requested by user programs during run-time

– sbrk() system call is very simple

– library between user program and sbrk() system call

– standardized malloc interface

– different implementations for different operating systems

Secure Software Programming 6

Automation Systems Group

Heap Management

• Goals

– maximize portability / compatibility

• alignment (8 byte hardwired), addressing rules

– maximize locality

• allocate chunks that are used together near each other

• avoid fragmentation

– maximize error detection

• debug hooks, deactivated by default

– minimize used space

• as little management information as possible

– minimize time for (de)allocation

Secure Software Programming 7

Automation Systems Group

Heap Management

• Implementations

• dlmalloc

– keeps tags around allocated memory for book-keeping

– overflow may modify these tags

– functions malloc, realloc, free, calloc might be tricked into

executing arbitrary code

Microsoft WindowsRtlHeap

*BSD, AIXBSD phk, BSD kingsley

Solaris, IRIXSystem V (AT&T)

GNU LibC (Linux)Doug Lea’s dlmalloc

Operating SystemAlgorithm

Secure Software Programming 8

Automation Systems Group

dlmalloc

• Memory layout

– heap is divided into contiguous chunks of memory

– no two free chunks may be physically adjacent

HeapHeap low addresses " high addresses

U ... used chunk

F ... free chunk

Wilderness ... topmost free chunk

• Wilderness chunk

– only chunk that may be increased (with system call sbrk)

– treated as bigger than all other chunks

U U UUUF F Wilderness

Secure Software Programming 9

Automation Systems Group

dlmalloc

• Memory chunk
– contiguous region of heap memory

– can be allocated, freed, split, coalesced (two free chunks)

• Public and Internal routines

 malloc(size_t n)
 calloc(size_t unit, size_t quantity)

" chunk_alloc()

 realloc(void* ptr, size_t n)

" chunk_alloc() / chunk_free()

 free(void *ptr)
" chunk_free()

Secure Software Programming 10

Automation Systems Group

dlmalloc

• Boundary tag

– holds chunk management information

– stored in front of each chunk

– 16 bytes large " minimum allocated size

struct malloc_chunk {

size_t prev_size; // only used when previous chunk is free

size_t size; // size of chunk in bytes + 2 status-bits

struct malloc_chunk *fd; // only used for free chunks

struct malloc_chunk *bk; // only used for free chunks

};

• pointer returned by malloc (for user) starts at fd

– usually 8 bytes overhead for allocated chunks

Secure Software Programming 11

Automation Systems Group

dlmalloc

size of previous chunk (unused)

user data (may be 0 bytes)

bk-ptr (here may be user data)

fd-ptr (here may be user data)

chunk size (in bytes) + status

size of previous chunk (in bytes)

Allocated Chunk Free Chunk

mem

chunk

next

chunk
size of previous chunk (in bytes)

unused data (may be 0 bytes)

bk-ptr for circular list (bins)

fd-ptr for circular list (bins)

chunk size (in bytes) + status

unused (may hold user data)chunk

next

chunk

Secure Software Programming 12

Automation Systems Group

dlmalloc

• Boundary tag – prev_size field

– only used when previous chunk is free

– to reduce memory wastage, field can hold user-data of previous chunk

• Boundary tag – size field

– holds chunk size in bytes, but size is always a multiple of 8

– chunk size = requested memory (by user via malloc)

 + 8 bytes (overhead)

 - 4 bytes (prev_field of next chunk)

 rounded up to next multiple of 8

– 3 least significant bits are always 0, two of them are used as status
bits
• PREV_INUSE (0x01) – 1 if previous chunk is in use

• IS_MMAPED (0x02) – 1 if chunk is memory mapped

Secure Software Programming 13

Automation Systems Group

dlmalloc

• Bin Management

– available chunks are maintained in bins

– depending on the size of the chunk, the corresponding bin is chosen

– remainder of most-recently split (non-top) chunk and top (wilderness)

chunk are never in any bin

– chunks with a size of less than 512 bytes are called smallsmall

– 128 available bins

– 62 small bins (for small chunks of size 16 – 504 byte) only hold chunks

of a certain size

– regular bins hold chunks of a certain size range

Secure Software Programming 14

Automation Systems Group

dlmalloc

– chunks are stored in bins on a circular doubly-linked list

– the bin itself consists of two pointers (forward/back) and acts as

the corresponding list head

– each bin is initially empty

– chunks are maintained in decreasing sorted order by size

" best fit algorithm

Bin 79 1531 1502 1476

back pointer

forward pointer

Secure Software Programming 15

Automation Systems Group

dlmalloc

• Memory allocation

1. List of corresponding bin is scanned (starting backwards)

- when chunk of exactly correct size (chunk size is equal or bigger by not more

 than 16 bytes than the requested size) is found, return it

2. Most-recent remainder of split is used (when large enough)

- split it when it is too big, return it when size is exact

3. Other bins are scanned in increasing order

- return chunk of exact size, split one that is too big

4. Split memory from wilderness chunk (when big enough)

5. Extend wilderness chunk (with sbrk()), when this fails, return NULL

Secure Software Programming 16

Automation Systems Group

dlmalloc

• Memory de-allocation (free operation)

1. When the chunk to be freed borders the wilderness chunk, it is

consolidated into it

2. If the chunk before the one to be freed is unallocated, it is consolidated

into a single large chunk

3. If the chunk after the one to be freed is unallocated, it is consolidated into

a single large chunk

Secure Software Programming 17

Automation Systems Group

dlmalloc

• When chunks are handled, their entries have to be taken off or
inserted into the corresponding lists

• Macro unlink()

– used to take off entry P with its pointers FD and BK

#define unlink(P, BK, FD){ \

BK = P->bk; \

FD = P->fd; \

FD->bk = BK; \

BK->fd = FD; }

• Macro frontlink()

– used to insert P (size S, pointers FD, BK) into bin IDX

Secure Software Programming 18

Automation Systems Group

dlmalloc

#define frontlink(A, P, S, IDX, BK, FD) {

IDX = bin_index(S); \

BK = bin_at(A, IDX); \

FD = BK->fd; \

if (FD == BK) { \

mark_binblock(A, IDX); \

} else { \

while (FD != BK && S < chunksize(FD) \

FD = FD->fd; \

} \

BK = FD->bk; \

 } \

P->bk = BK; \

P->fd = FD; \

FD->bk = BK->fd = P; }

Secure Software Programming 19

Automation Systems Group

dlmalloc

• Exploiting the unlink() macro

– overwrite an arbitrary memory position with arbitrary integer

– overwrite address stored in FD + 12 (offset of bk) with BK

BK = P->bk;

FD = P->fd;

FD->bk = BK;

– overwrite a function pointer (e.g. stored in GOT – global offset
table) with address of the shell code

– when function is later invoked, shell code is executed instead

– used against netscape, traceroute and slocate

Secure Software Programming 20

Automation Systems Group

dlmalloc

• Exploiting the frontlink() macro

– overwrite an arbitrary memory position with address of modified
chunk

– overwrite address stored in BK + 8 (offset of fd)

with address of chunk P
while (FD != BK && S < chunksize(FD)

FD = FD->fd;

BK = FD->bk;

FD->bk = BK->fd = P;

– beginning of chunk (prev_size field) has to contain executable
code (e.g. jump to shell code)

– same approach as unlink() macro

– no known exploit in the wild, but sudo example in Phrack 57-8

Secure Software Programming 21

Automation Systems Group

Heap Overflow

• Heap overflow requires modification of boundary tags

– in-band management information

– task is to fake these tags to trick dlmalloc into overwriting

addresses of attackers choice

• Different techniques for other memory managers

– System V (Solaris, IRIX) - self-adjusting binary trees

– Phrack 57-9 (Once upon a free())

Secure Software Programming 22

Automation Systems Group

Format String Vulnerability

• Problem of user supplied input that is used with *printf()

– printf(“Hello world\n“); // is ok

– printf(user_input); // vulnerable

• *printf()

– function with variable number of arguments

int printf(const char *format, ...)

– as usual, arguments are fetched from the stack

• const char *format is called format string

– used to specify type of arguments

• %d or %x for numbers

• %s for strings

Secure Software Programming 23

Automation Systems Group

Format String Vulnerability

#include <stdio.h>

int main(int argc, char **argv){

 char buf[128];

 int x = 1;

 snprintf(buf, sizeof(buf), argv[1]);

 buf[sizeof buf - 1] = '\0';

 printf("buffer (%d): %s\n", strlen(buf), buf);

 printf("x is %d/%#x (@ %p)\n", x, x, &x);

 return 0;

}

Secure Software Programming 24

Automation Systems Group

Format String Vulnerability

chris@euler:~/test > ./vul "%x %x %x %x“

buffer (28): 40017000 1 bffff680 4000a32c

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul "AAAA %x %x %x %x %x“

buffer (35): AAAA 40017000 1 bffff680 4000a32c 1

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul "AAAA %x %x %x %x %x %x“

buffer (44): AAAA 40017000 1 bffff680 4000a32c 1 41414141

x is 1/0x1 (@ 0xbffff638)

Secure Software Programming 25

Automation Systems Group

Format String Vulnerability

char buf[128]

int x

fmt string

sizeof(buf)

&buf[0]

Stack Layout

stack frame for main()

arguments for snprintf()

stack frame for snprintf()

Secure Software Programming 26

Automation Systems Group

Format String Vulnerability

chris@euler:~/test > perl -e 'system "./vul", "\x38\xf6\xff\xbf

%x %x %x %x %x %x“'

buffer (44): 8öÿ¿ 40017000 1 bffff680 4000a32c 1 bffff638

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > perl -e 'system "./vul", "\x38\xf6\xff\xbf

%x %x %x %x %x%n“'

buffer (35): 8öÿ¿ 40017000 1 bffff680 4000a32c 1

x is 35/0x2f (@ 0xbffff638)

• One can use width modifier to write arbitrary values

– for example, %.500d

– even in case of truncation, the values that would have been written
are used for %n

