Secure Software Programming
and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at
http://www.auto.tuwien.ac.at/~chris

Input Validation

Overview

« Systems receive data from variety of sources
— from software's users to
— remote systems on a network

» Often, these sources are untrusted
— potentially hostile

+ Every piece of data needs to be checked
— data has to be as anticipated (conform to specification)

» Input Validation

Input Validation

+ Task
— determine legal input
— clean input data from illegal parts (filtering)

» Filtering
— use principle of “fail-safe defaults”
— reject anything that is not explicitly considered legal,
don’t specify filters for “bad” input
— “bad” input is only useful to test filter

— check for data content and
data length (minimum and maximum length)

Input Validation

* Drop privileges while parsing input
— especially when using unsafe languages (e.g., C/ C++) and
— complex parsers such as lex and yacc

* Use trustworthy channels
— especially for authentication and pre-validated input

* Deputy problem

— checking program and program that uses data make slightly
different assumptions

— standards are helpful, but often specific extensions

Input Validation

« Common sources of untrusted input

— Input that a program operates on (local or remote)
+ strings
+ files
» web-based transactions (HTML, URLs, session management)

— Input that controls program behavior
« command line arguments
+ environment variables
+ configuration files
* locale settings
+ signals

Strings

* Optimally, specified as regular expression

* Problem
— control and metacharacters

* Metacharacters
— characters that are not interpreted as data
— used as delimiters or command characters

— Examples
+ command line shell
+ SQL interpreter

e terminals
— WWW Security FAQ [Stein 1999]
&; "N vz -<>2 () L1 {}$\n\r

Strings

* Metacharacters
— shell is used for several important library calls
popen, system
— metacharacters need to be escaped

* Line ending encoding

Platform Line Encoding | ASCII
Apple [CR] 0x0d
UNIX [LF] 0x0a

DOS / Windows | [CR][LF] 0x0d 0x0a
0S/390 [NEL] 0x85

— HTTP specification
* |ISS evasion attack

Character Encoding

« Strings are represented as characters

Traditionally, 8-bit ASCII characters were used

— only 256 characters possible

— unsuitable for many languages except English

ISO 10646 Universal Multiple-Octet Coded Character Set (UCS)

— unique 31 bit values for each character
— first 65536 characters termed16-bit BSM (basic multi-lingual plane)

merged with Unicode forum efforts

* Problem with existing programs that expect a character to be a byte
» UTF-8 encoding

Character Encoding

+ UTF-8 encoding

variable length encoding (character is 1 to 7 bytes long)
classical US ASCII characters (0 to 0x7f) encode as themselves

UCS characters beyond 0x7f are encoded as a multi-byte sequence
consisting only of bytes in the range 0x80 to Oxfd

» especially, no null character permitted
lexicographic sorting order of UCS-4 strings is preserved
* good for search algorithms

Problem

same value can be encoded in different ways
standard now requires “smallest possible form”
thus some sequences are not permitted

opens problems for misinterpretation

00 could be encoded (illegally) as co 80

10

Files

* File names
— avoid globbing (i.e., expanding metacharacters such as *)
— avoid directory delimiter ‘/’ and control characters ‘. .’

— problematic characters
« \0O’
end of filename

3
°

misinterpreted as program argument
filename “-1a”
1ls * getsexpandedto ls -la <other files>
» control characters
* spaces
— separation of arguments

1"

Files

* File descriptors

— invoking program chooses file descriptors
+ used for redirection

— Problem
+ standard file descriptors (stdin, stdout, stderr) can be closed
» next open operation opens smallest file descriptor
+ for example, when open reopens stdout
+ then all regular print statements are also sent to this file

* File contents
— must be protected properly (permission settings)

12

Command Line Arguments

Obviously complete control of attacker
— execve system call

Important

— program name can be tampered with
— argv[0] cannot be trusted

Environment Variables

13

Inherited from calling process
— also complete control of attacker
— should be cleared (or at least sanitized)

— add safe default values
- PATH, IFS, TZ (time zone)

Dangerous environment variables
— IFS (internal field separator)
used to determine argument separator
can be setto ‘/’
system(“/bin/bash”) calls bin program in local directory

14

Environment Variables

« Dangerous environment variables storage format
— array of pointers to strings
— strings have “name=value” format
— possible to have set up multiple entries of same name
— checked and used variable might be different

» User control over environment
— via configuration files (e.g., user login file, . ssh/environment)
— using protocol support (telnet environment option)
— should be avoided
LD PRELOAD attack against nologin program

15

Locale Settings

« Combination of language and cultural factors
— internationalization (support for multiple locales)
— localization (usage of a particular locale)

+ Selection
— for local programs via environment variables
— for web applications via browser request line

» Support
— using the catgets or gettext interface
— catgets uses integer indexes into string tables
— gettext uses a mapping from English text to the locale

heavily dependent on environment variable settings

16

Web Issues

Web traffic is ubiquitous
— few popular web servers
— but many (custom made) web applications

Many security concerns
— complex specifications
* URL encoding
« HTML
— stateless protocol
+ session tracking needed
* URL rewriting
+ hidden fields
* cookies

CGlI Programs

17

Common Gateway Interface

— programs run on trusted server
— receive input from remote clients via stdin and environment variables

Often, script languages are used

— shell code
— Perl
— PHP

Unchecked input is the biggest issue according to OWASP Top 10 list

18

CGI Programs

* Perl supports “tainting” mechanism
unsafe input is “tainted”

tainted input cannot be used in unsafe operations unless explicitly checked

check works by using regular expressions

run-time check

* PHP can be configured with unsafe “global register” behavior
— all query variables are immediately copied into global variables
— allows easy access to query variables in scripts
— can unexpectedly overwrite any variable that is not initialized

* Forbid HTTP GET for non-queries
— to transmit data, POST should be used
— GET transmits data via URL

— attacker can create malicious URLs that can be clicked or auto-loaded and perform
undesired actions

19

URL Encoding

¢ Values in URLs can be URL-encoded
— must be decoded properly

* Hex encoding (RFC compliant)
— %XX, where XX is hexadecimal ASCII value of character
A = %41

* Double hex encoding (Microsoft 11S)
— %25XX, where XX is hexadecimal ASCII value of character (%25 = %)
A = %25XX

* Double nibble hex encoding (Microsoft 11S)

— each hexadecimal nibble is separately encoded
A = %25%34%31

20

HTML Filtering

* Problem

— HTML input data that is sent to other users
— Cross-site malicious content

+ attacker embeds malicious content in page that is displayed at victim’s
site

* can be used to

steal cookies, launch denial of service attacks (spawn windows, tamper
with fonts, ...), or display bogus forms

e Solution

— Filter HTML tags

* make sure to remove ‘<‘ and >’
— Encode HTML tags

* using &val;

21

HTML Filtering

« When HTML data must be accepted
— use validation of HTML data
— list of “safe” HTML tags
— nesting must be balanced
— check attributes (some may contain scripts)

» Validating links (URIs/URLS)
URI = scheme://authority[path][?query][#fragment]

authority = [username[:password]@]host[:portnumber]

— scheme should be restricted to http / https
— most other options should be immediately removed (user / passwd)

22

HTTP Sessions

+ Sessions are needed for applications that require state

— all applications that require authentication

« Session ID can be
— encoded in URL (caching, stored in referrer logs of other sites)
— hidden fields (not all requests are POSTs)
— cookies (preferable, but cookies can be disabled)

+ Cookie
— token that is stored on client machine
— set by server

— uses a single domain attribute
» cookies are only sent back to servers whose domain attribute match

23

HTTP Sessions

* Non-persistent cookies
— are only stored im memory during browser session
— good for sessions

» Secure cookies
— cookies that are only sent over encrypted (SSL) connections

* Only encrypting the cookie over insecure connection is useless
— attackers can simply replay a stolen, encrypted cookie

» Cookies that include the IP address
— makes cookie stealing harder
— breaks session if IP address of client changes during that session

24

