
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Input Validation

Secure Software Programming 3

Automation Systems Group

Overview

• Systems receive data from variety of sources

– from software's users to

– remote systems on a network

• Often, these sources are untrusted

– potentially hostile

• Every piece of data needs to be checked

– data has to be as anticipated (conform to specification)

! Input Validation

Secure Software Programming 4

Automation Systems Group

Input Validation

• Task

– determine legal input

– clean input data from illegal parts (filtering)

• Filtering

– use principle of “fail-safe defaults”

– reject anything that is not explicitly considered legal,

don’t specify filters for “bad” input

– “bad” input is only useful to test filter

– check for data content and

data length (minimum and maximum length)

Secure Software Programming 5

Automation Systems Group

Input Validation

• Drop privileges while parsing input

– especially when using unsafe languages (e.g., C / C++) and

– complex parsers such as lex and yacc

• Use trustworthy channels

– especially for authentication and pre-validated input

• Deputy problem

– checking program and program that uses data make slightly
different assumptions

– standards are helpful, but often specific extensions

Secure Software Programming 6

Automation Systems Group

Input Validation

• Common sources of untrusted input

– Input that a program operates on (local or remote)

• strings

• files

• web-based transactions (HTML, URLs, session management)

– Input that controls program behavior

• command line arguments

• environment variables

• configuration files

• locale settings

• signals

Secure Software Programming 7

Automation Systems Group

Strings

• Optimally, specified as regular expression

• Problem

– control and metacharacters

• Metacharacters

– characters that are not interpreted as data

– used as delimiters or command characters

– Examples

• command line shell

• SQL interpreter

• terminals

– WWW Security FAQ [Stein 1999]

& ; ` ' \ " | * ? ~ < > ^ () [] { } $ \n \r

Secure Software Programming 8

Automation Systems Group

Strings

• Metacharacters

– shell is used for several important library calls

popen, system

– metacharacters need to be escaped

• Line ending encoding

– HTTP specification

• ISS evasion attack

0x85[NEL]OS/390

0x0d 0x0a[CR][LF]DOS / Windows

0x0a[LF]UNIX

0x0d[CR]Apple

ASCIILine EncodingPlatform

Secure Software Programming 9

Automation Systems Group

Character Encoding

• Strings are represented as characters

• Traditionally, 8-bit ASCII characters were used

– only 256 characters possible

– unsuitable for many languages except English

• ISO 10646 Universal Multiple-Octet Coded Character Set (UCS)

– unique 31 bit values for each character

– first 65536 characters termed16-bit BSM (basic multi-lingual plane)

– merged with Unicode forum efforts

• Problem with existing programs that expect a character to be a byte

! UTF-8 encoding

Secure Software Programming 10

Automation Systems Group

Character Encoding

• UTF-8 encoding

– variable length encoding (character is 1 to 7 bytes long)

– classical US ASCII characters (0 to 0x7f) encode as themselves

– UCS characters beyond 0x7f are encoded as a multi-byte sequence
consisting only of bytes in the range 0x80 to 0xfd

• especially, no null character permitted

– lexicographic sorting order of UCS-4 strings is preserved

• good for search algorithms

• Problem

– same value can be encoded in different ways

– standard now requires “smallest possible form”

– thus some sequences are not permitted

– opens problems for misinterpretation

00 could be encoded (illegally) as C0 80

Secure Software Programming 11

Automation Systems Group

Files

• File names

– avoid globbing (i.e., expanding metacharacters such as *)

– avoid directory delimiter ‘/’ and control characters ‘..’

– problematic characters

• ‘\0’

end of filename

• ‘-’

misinterpreted as program argument

filename “-la”

ls * gets expanded to ls -la <other files>

• control characters

• spaces

– separation of arguments

Secure Software Programming 12

Automation Systems Group

Files

• File descriptors

– invoking program chooses file descriptors

• used for redirection

– Problem

• standard file descriptors (stdin, stdout, stderr) can be closed

• next open operation opens smallest file descriptor

• for example, when open reopens stdout

• then all regular print statements are also sent to this file

• File contents

– must be protected properly (permission settings)

Secure Software Programming 13

Automation Systems Group

Command Line Arguments

• Obviously complete control of attacker

– execve system call

• Important

– program name can be tampered with

– argv[0] cannot be trusted

Secure Software Programming 14

Automation Systems Group

Environment Variables

• Inherited from calling process

– also complete control of attacker

– should be cleared (or at least sanitized)

– add safe default values

• PATH, IFS, TZ (time zone)

• Dangerous environment variables

– IFS (internal field separator)

used to determine argument separator

can be set to ‘/’

system(“/bin/bash”) calls bin program in local directory

Secure Software Programming 15

Automation Systems Group

Environment Variables

• Dangerous environment variables storage format

– array of pointers to strings

– strings have “name=value” format

– possible to have set up multiple entries of same name

– checked and used variable might be different

• User control over environment

– via configuration files (e.g., user login file, .ssh/environment)

– using protocol support (telnet environment option)

– should be avoided

LD_PRELOAD attack against nologin program

Secure Software Programming 16

Automation Systems Group

Locale Settings

• Combination of language and cultural factors

– internationalization (support for multiple locales)

– localization (usage of a particular locale)

• Selection

– for local programs via environment variables

– for web applications via browser request line

• Support

– using the catgets or gettext interface

– catgets uses integer indexes into string tables

– gettext uses a mapping from English text to the locale

– heavily dependent on environment variable settings

Secure Software Programming 17

Automation Systems Group

Web Issues

• Web traffic is ubiquitous

– few popular web servers

– but many (custom made) web applications

• Many security concerns

– complex specifications

• URL encoding

• HTML

– stateless protocol

• session tracking needed

• URL rewriting

• hidden fields

• cookies

Secure Software Programming 18

Automation Systems Group

CGI Programs

• Common Gateway Interface

– programs run on trusted server

– receive input from remote clients via stdin and environment variables

• Often, script languages are used

– shell code

– Perl

– PHP

• Unchecked input is the biggest issue according to OWASP Top 10 list

Secure Software Programming 19

Automation Systems Group

CGI Programs

• Perl supports “tainting” mechanism

– unsafe input is “tainted”

– tainted input cannot be used in unsafe operations unless explicitly checked

– check works by using regular expressions

– run-time check

• PHP can be configured with unsafe “global register” behavior

– all query variables are immediately copied into global variables

– allows easy access to query variables in scripts

– can unexpectedly overwrite any variable that is not initialized

• Forbid HTTP GET for non-queries

– to transmit data, POST should be used

– GET transmits data via URL

– attacker can create malicious URLs that can be clicked or auto-loaded and perform
undesired actions

Secure Software Programming 20

Automation Systems Group

URL Encoding

• Values in URLs can be URL-encoded

– must be decoded properly

• Hex encoding (RFC compliant)

– %XX, where XX is hexadecimal ASCII value of character

A = %41

• Double hex encoding (Microsoft IIS)

– %25XX, where XX is hexadecimal ASCII value of character (%25 = %)

A = %25XX

• Double nibble hex encoding (Microsoft IIS)

– each hexadecimal nibble is separately encoded

A = %25%34%31

Secure Software Programming 21

Automation Systems Group

HTML Filtering

• Problem

– HTML input data that is sent to other users

– Cross-site malicious content

• attacker embeds malicious content in page that is displayed at victim’s
site

• can be used to

steal cookies, launch denial of service attacks (spawn windows, tamper
with fonts, …), or display bogus forms

• Solution

– Filter HTML tags

• make sure to remove ‘<‘ and ‘>’

– Encode HTML tags

• using &val;

Secure Software Programming 22

Automation Systems Group

HTML Filtering

• When HTML data must be accepted

– use validation of HTML data

– list of “safe” HTML tags

– nesting must be balanced

– check attributes (some may contain scripts)

• Validating links (URIs/URLs)

 URI = scheme://authority[path][?query][#fragment]

 authority = [username[:password]@]host[:portnumber]

– scheme should be restricted to http / https

– most other options should be immediately removed (user / passwd)

Secure Software Programming 23

Automation Systems Group

HTTP Sessions

• Sessions are needed for applications that require state

– all applications that require authentication

• Session ID can be

– encoded in URL (caching, stored in referrer logs of other sites)

– hidden fields (not all requests are POSTs)

– cookies (preferable, but cookies can be disabled)

• Cookie

– token that is stored on client machine

– set by server

– uses a single domain attribute

• cookies are only sent back to servers whose domain attribute match

Secure Software Programming 24

Automation Systems Group

HTTP Sessions

• Non-persistent cookies

– are only stored im memory during browser session

– good for sessions

• Secure cookies

– cookies that are only sent over encrypted (SSL) connections

• Only encrypting the cookie over insecure connection is useless

– attackers can simply replay a stolen, encrypted cookie

• Cookies that include the IP address

– makes cookie stealing harder

– breaks session if IP address of client changes during that session

