
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Administrative Issues

• Mode

– lectures and paper discussions

– small programming assignments (but only a few)

– written final (end of June)

• Dates

– Monday 2pm. - 3pm. and Wednesday 5pm. - 6pm.

– HS 13 Ernst Melan

– no class next Monday (26.04.04)

• Slides and News

– available under http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 3

Automation Systems Group

Topics

• Introduction

• Linux features and TCP/IP tutorial

• Architectural issues

– interface design and privilege separation

– input validation

– race conditions

– denial of service

• Implementation issues

– stack overflow

– heap overflow

– miscellaneous problems (e.g., format strings, integer overflows)

– source code auditing tools

• Operational issues

– system management and patching

Secure Software Programming 4

Automation Systems Group

Introduction

Secure Software Programming 5

Automation Systems Group

Overview

• Security issues at various stages of application life-cycle

– mistakes, vulnerabilities, and exploits

– avoidance, detection, and defense

• Architecture

– security considerations when designing the application

• Implementation

– security considerations when writing the application

• Operation

– security considerations when the application is in production

Secure Software Programming 6

Automation Systems Group

Overview

• Architecture and design

– validation of requirements (building the right model)

– verification of design (building the model right)

• Common problems

– authentication and privileges

• session reply

• principle of least privilege

– communication protocol design

• sniffing, man-in-the-middle

• session killing, hijacking

– parallelism and resource access

• race conditions

– denial of service

Secure Software Programming 7

Automation Systems Group

Overview

• Implementation

– verification of implementation

– classic vulnerabilities (often programming language specific)

• Common problems

– buffer overflows

• static (stack) overflows

• dynamic (heap) overflows

– input validation

• URL encoding

• document root escape

• SQL injection

– back doors

Secure Software Programming 8

Automation Systems Group

Overview

• Operation

– decisions made after software is deployed

– often not under developer’s control

• Common problems

– denial of service (DOS)

• network DOS

• distributed DOS, zombies

– administration problems

• weak passwords

• password cracking

• unsafe defaults

Secure Software Programming 9

Automation Systems Group

Terminology

• What is an attack?

– no easy answer, it depends

• Security Policy
– The framework within which an organization establishes needed levels of

information security to achieve the desired integrity, confidentiality, and

availability goals. A policy is a statement of information values, protection

responsibilities, and organization commitment for a system.

(US Congressional Office of Technology)

– A set of guidelines defining what you want to protect and what you want to

allow at your site.

Secure Software Programming 10

Automation Systems Group

Terminology

• What you want to protect?

– defines assets

• What are the goals of your protection efforts?

– Integrity

• property that data has not been altered or destroyed in an unauthorized
manner

– Confidentiality

• property that information is not made available or disclosed to
unauthorized individuals, entities or processes

– Availability

• property of being accessible and useable upon demand by an
authorized entity

Secure Software Programming 11

Automation Systems Group

Terminology

• What do you want to protect against?

– threat model

– risk analysis

• Different security policies

– bank answers questions different than home user

• Attack

– any maliciously intended act against a system or a population of
systems

– any action that violates a given security policy

Secure Software Programming 12

Automation Systems Group

Insecure Software

or, why good people write bad code

• Technical factors

– complexity of task

• Economic factors

– deadlines

– insufficient funding

• Human factors

– mental models

– social factors

Secure Software Programming 13

Automation Systems Group

Technical Factors

• Complexity

– algorithmic complexity

– parallel processes, threads

– multi-user

– indeterminism

• Composition

– incorrect assumptions

– surprising interactions

– example: rlogin -l -froot

• Changes

– consequences are hard to predict

– example: Sun tarballs

Secure Software Programming 14

Automation Systems Group

Economic Factors

• Production pressure

– not enough time

– not enough manpower for testing

• Security is not a feature

– just secure enough

• Open-source vs. closed-source debate

– open-source is peer-reviewed

– closed-source is written by professionals

• Legacy software

Secure Software Programming 15

Automation Systems Group

Human Factors

• Poor risk assessment

– invisible enemy

• Mental models

– only check for errors that are understood

– assume software is used for a specific task

example: mouse driver exploit

Secure Software Programming 16

Automation Systems Group

Improvement

• Tools

– detect mistakes and vulnerabilities

– support programmer

– formal verification

• Standards and metrics

– hold vendors accountable

– allow for comparison between products

• Education

– that’s why we are here

