
Automation Systems Group

Unix Security Features

and

TCP/IP Primer

Secure Software Programming and Vulnerability Analysis

Christopher Kruegel

Secure Software Programming 2

Automation Systems Group

Unix Security Features

and

TCP/IP Primer

Secure Software Programming 3

Automation Systems Group

Unix Features

• Multi-user operating system

• Process

– implements user-activity

– entity that executes a given piece of code

– has its own execution stack, memory pages, and file

descriptors table

• Thread

– separate stack and program counter

– share memory pages and file descriptor table

Secure Software Programming 4

Automation Systems Group

Unix - Process

• Process Attributes

– process ID (PID)

• uniquely identified process

– user ID (UID)

• ID of owner of process

– effective user ID (EUID)

• ID used for permission checks (e.g., to access resources)

– saved user ID (SUID)

• to temporarily drop and restore privileges

– lots of management information

• scheduling

• memory management, resource management

Secure Software Programming 5

Automation Systems Group

Unix - User Model

• Unix is user-centric

– no roles

• User

– identified by user name (UID), group name (GID)

– authenticated by password (stored encrypted)

• User root
– superuser, system administrator

– special privileges (access resources, modify OS)

– cannot decrypt user passwords

Secure Software Programming 6

Automation Systems Group

Unix - Authentication

• Passwords
– user passwords are used as keys for crypt() function

– runs DES algorithm 25 times on a block of zeros

– 12-bit “salt”

• 4096 variations

• chosen from date, not secret

• prevent same passwords to map onto same string

• make dictionary attacks more difficult

• Password cracking
– dictionary attacks

– Crack, JohnTheRipper

Secure Software Programming 7

Automation Systems Group

Unix - Authentication

/etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/false

daemon:x:2:2:daemon:/sbin:/bin/false

adm:x:3:4:adm:/var/adm:/bin/false

lp:x:4:7:lp:/var/spool/lpd:/bin/false

chris:AcPyurst9Bfgz1:1000:100:Chris Kruegel:/home/chris:/bin/bash

username password UID GID complete name home-dir login-shell

Secure Software Programming 8

Automation Systems Group

Unix - Authentication

• Authentication

– prompt - /bin/login

– user provides name and password

– salt retrieved from /etc/password

– zero block is encrypted

– result compared to stored one

• Attacks

– fake logins

– tty tapping

– social engineering

Secure Software Programming 9

Automation Systems Group

Unix - Authentication

• Shadow passwords
– password file is needed by many applications to map user ID

to user names

– encrypted passwords are not

• /etc/shadow

– holds encrypted passwords

– account information

• last change date

• expiration (warning, disabled)

• minimum change frequency

– readable only by superuser and privileged programs

– MD5 hashed passwords to slow down guessing

Secure Software Programming 10

Automation Systems Group

Unix - Group Model

• Users belong to one or more groups
– primary group (stored in /etc/password)

– additional groups (stored in /etc/group)

– possibility to set group password

– and become group member with newgrp

• /etc/group

root:x:0:root

bin:x:1:root,bin,daemon

users:x:100:chris

groupname : password : group id : additional users

Secure Software Programming 11

Automation Systems Group

Unix - File System

• File tree

– primary repository of information

– hierarchical set of directories

– directories contain file system objects (FSO)

– root is denoted “/”

• File system object

– files, directories, symbolic links, sockets, device files

– referenced by inode (index node)

Secure Software Programming 12

Automation Systems Group

Unix - File System

• File System Object Attributes

– type

– size

– reference counter

– position on disk (disk block list)

– UID and GID of owner

– access and modification times

– permission bits

– but no file name!

• Directory

– holds mapping between name and inode

Secure Software Programming 13

Automation Systems Group

Unix - File System

• Access Control

– permission bits

– chmod, chown, chgrp, umask

– file listing:

files only delete-

able by owner

new files

have dir-gid

stat / execute

files, chdir

insert and

remove files
list filesDirectory

sticky bit
suid / sgid

inherit id
executewrite accessread accessFile

tsxwrType

 - rwx rwx rwx

(file type) (user) (group) (other)

Secure Software Programming 14

Automation Systems Group

Unix - SUID Programs

• Each process has real and effective user / group ID

– usually identical

– real IDs

• determined by current user

• login, su

– effective IDs

• determine the “rights” of a process

• system calls (e.g., setuid())

• suid / sgid bits

– attractive target for attacker

Secure Software Programming 15

Automation Systems Group

Unix - Resource Limits

• File system limits
– quotas

– restrict number of storage blocks and number of inodes

– hard limit

• can never be exceeded (operation fails)

– soft limit

• can be exceeded temporarily

– can be defined per mount-point

– defend against resource exhaustion (denial of service)

• Process resource limits
– number of child processes, open file descriptors

Secure Software Programming 16

Automation Systems Group

Unix - Signals

• Signal
– simple form of interrupt

– asynchronous notification

– can happen anywhere for process in user space

– used to deliver segmentation faults, reload commands, …

– kill command

• Signal handling
– process can install signal handlers

– when no handler is present, default behavior is used

• ignore or kill process

– possible to catch all signals except SIGKILL (-9)

Secure Software Programming 17

Automation Systems Group

Unix - Signals

• Security issues

– code has to be be re-entrant

• atomic modifications

• no global data structures

– race conditions

– unsafe library calls, system calls

• Secure signals

– write handler as simple as possible

– block signals in handler

Secure Software Programming 18

Automation Systems Group

Unix - Communication

• Half-duplex pipes
– connect output of one process to input of another

– information flows uni-directional

– classic use in shell programming (via | character)

– represented by a file (inode) in kernel but not in file system

• Named pipes
– much like regular pipes

– exist as a device special file in the file system

– processes of different ancestry can share data

– when I/O is done by sharing processes, the named pipe
remains in the file system

Secure Software Programming 19

Automation Systems Group

Unix - Communication

• AT&T System V IPC
– inter-process communication primitives

– shared memory, semaphores, message queues

– standard access control mechanisms apply

• BSD Sockets
– mostly used for network connections

– local sockets possible

• e.g., to implement pipes

– appear as objects in file system

• but cannot use open

– more on sockets later in the TCP/IP section

Secure Software Programming 20

Automation Systems Group

Unix - Shared Libraries

• Library

– collection of object files

– included into (linked) program as needed

– code reuse

• Shared library

– multiple processes share a single library copy

– save disk space (program size is reduced)

– save memory space (only a single copy in memory)

Secure Software Programming 21

Automation Systems Group

Unix - Shared Libraries

• Static shared library
– address binding at link-time

– not very flexible when library changes

– code is fast

• Dynamic shared library
– address binding at load-time

– procedure linkage table (PLT) and global offset table (GOT)

– code is slower (indirection)

– loading is slow (binding has to be done at run-time)

– management issues (semantic changes)

– classic .so or .dll libraries

Secure Software Programming 22

Automation Systems Group

Unix - Shared Libraries

• Management

– stored in special directories (listed in /etc/ld.so.conf)

– manage cache with ldconfig

• Preload

– override (substitute) with other version

– use /etc/ld.so.preload

– can also use environment variables for override

– possible security hazard

– disabled for SUID programs

Secure Software Programming 23

Automation Systems Group

Unix Security Features

and

TCP/IP Primer

Secure Software Programming 24

Automation Systems Group

OSI Reference Model

• Developed by the ISO to support open systems interconnection

– layered architecture, level n uses service of (n-1)

 Host A Host B

7 Application Layer Application Layer

6 Presentation Layer Presentation Layer

5 Session Layer Session Layer

4 Transport Layer Transport Layer

3 Network Layer Network Layer

2 Data Link Layer Data Link Layer

1 Physical Layer Physical Layer

Secure Software Programming 25

Automation Systems Group

OSI Reference Model

• Physical Layer

– connect to channel / used to transmit bytes (= network cable)

• Data Link Layer

– error control between adjacent nodes

• Network Layer

– transmission and routing across subnets

• Transport Layer

– ordering

– multiplexing

– correctness

Secure Software Programming 26

Automation Systems Group

OSI Reference Model

• Session Layer

– support for session based interaction

– e.g. communication parameters/communication state

• Presentation Layer

– standard data representation

• Application Layer

– application specific protocols

Secure Software Programming 27

Automation Systems Group

TCP / IP

NIC

Ethernet

Internet Protocol (IP)

TCP

Telnet SMTP

TCP/IP OSI-Reference

Application

Transport

Network

Data Link Layer

Physical Layer

Secure Software Programming 28

Automation Systems Group

Internet

Internet

Host

Subnet

Subnet
Host

Host

Host

Host

Subnet

Host

PPP

(phone)

Secure Software Programming 29

Automation Systems Group

Internet Protocol (IP)

• Is the glue between hosts of the Internet

• Standardized in RFC 791

• Packet-based service

– packets have a maximum size of 216 bytes

• Attributes of delivery

– connectionless

– unreliable best-effort datagram

• delivery, integrity, ordering, non-duplication are NOT

guaranteed

Secure Software Programming 30

Automation Systems Group

Internet Protocol (IP)

• IP packets (datagrams) can be exchanged by any two nodes

that are set up as IP nodes (i.e., that have IP addresses)

• For point-to-point communication

– IP is tunneled over lower level protocols

• Ethernet

• Token Ring

• FDDI

• PPP, etc.

• Standardized data ordering

– network byte-order = big endian

– x86 host byte-order = little endian

Secure Software Programming 31

Automation Systems Group

IP Address

• IP addresses in IPv4 are 32 bit numbers

– (class+net+host ID)

• Each host has a unique IP address for each NIC

• Represented as dotted-decimal notation:

– 10000000 10000011 10101100 00000001 = 128.131.172.1

• Classes: <starts with> <net-bits> <host-bits> <#of possible hosts>

• Class A: 0 7 24 16777216

• Class B: 10 14 16 65536

• Class C: 110 21 8 256

• Class D: 1110 special meaning: 28 bit multicast address

• Class E: 1111 reserved for future use

Secure Software Programming 32

Automation Systems Group

IP Subnet

• It is often unrealistic to have networks with so many hosts

– further divide the hostbits into subnet ID and host ID

– saves address space

• Example: Class C normally has 24 netbits

Class C network with subnet mask 255.255.255.240

240 = 1111 0000

 | host ID => 16 hosts within every subnet

 subnet ID => 16 subnets within this class C network

Secure Software Programming 33

Automation Systems Group

IP - Direct Delivery

• If two hosts are in the same physical network the IP

datagram is encapsulated in a Layer 2 frame and

delivered directly

Host 1

(192.168.0.2)

Host 2

(192.168.0.3)

Host 3

(192.168.0.5)

Host 4

(192.168.0.81

)

Host 5

(192.168.0.99

)

Host 6

(192.168.0.7)

Secure Software Programming 34

Automation Systems Group

IP Encapsulation

• IP packet included in Layer 2 frame

– e.g., Ethernet (RFC 894 - IP over Ethernet)

Frame Header Frame Data

IP Header IP Data

e.g. Ethernet

Secure Software Programming 35

Automation Systems Group

Ethernet

• Widely used link layer protocol

• Carrier Sense, Multiple Access (CSMA) with Collision Detection

• Addresses: 48 bits (e.g. 00:38:af:23:34:0f)

• Frame

– 2 x 6 bytes addresses (destination and source)

– 2 bytes frame data type

• specifies encapsulated protocol, IP, ARP, RARP

– variable length data

– 4 bytes CRC

• Frame Length

– minimum of 64 bytes frame length

• padding may be needed

– maximum of 1518 bytes

Secure Software Programming 36

Automation Systems Group

IP - Direct Delivery

Problem:

• Ethernet uses 48 bit addresses

• IP uses 32 bit addresses

• We want to send an IP datagram

but we only can use the Link Layer to do this

Secure Software Programming 37

Automation Systems Group

ARP

• Solution - ARP (Address Resolution Protocol)

• Service at the link-level, RFC 826

• Maps IP network addresses to Ethernet link-level addresses

• Scenario:

– host A wants to know the Ethernet address associated with IP
address of host B

– A broadcasts ARP message on physical link (including its own
mapping)

– B answers A with ARP answer message

• Mappings are cached

– arp -a shows mapping

Secure Software Programming 38

Automation Systems Group

Fragmentation

• Fragmentation

– when datagram size is larger than data link layer MTU (Maximum

Transmission Unit)

– performed at

• source host

• or intermediate steps (e.g., routers)

• Reassembly

– rebuilding the IP packet

– only performed at the destination

• Each fragment is delivered as a separate datagram

Secure Software Programming 39

Automation Systems Group

IP - Indirect Delivery

• Routing

– needed if hosts are in different physical networks

– packet can‘t be delivered directly

• Packet is forwarded to a router (gateway)

– router has access to other network(s)

– router decides upon destination where to send the packet next

– this is repeated until packet arrives at network with target host

– then direct delivery is performed

– link level addresses change at every step, also TTL field

Secure Software Programming 40

Automation Systems Group

IP - Indirect Delivery

Internet

Host

Host

Host

Host

Host

Host

Host

Host

• Store and forward communication

Secure Software Programming 41

Automation Systems Group

Routing Table

• Contains information how to do hop-by hop routing

% route -n

Kernel IP routing table

Destination Gateway Genmask Flags Iface

192.168.1.0 0.0.0.0 255.255.255.0 U eth0

loopback 127.0.0.1 255.0.0.0 UG lo

0.0.0.0 192.168.1.1 0.0.0.0 UG eth0

• Flags:

– U: the route is up

– G: use gateway for destination

Secure Software Programming 42

Automation Systems Group

Routing Mechanism

• Route-daemon searches for

– matching host address

– matching network address

– default entry

• If no route can be found: ICMP message

– „Host unreachable“ is sent back to originator

• Routing tables can be set

– statically

– dynamically (using routing protocols)

Secure Software Programming 43

Automation Systems Group

Routing Protocols

• automatically distribute information about delivery routes

• hierarchically organized with different scope

• divided in

– exterior gateway protocols (EGPs)

• distribute information between different autonomous systems

• e.g., Border Gateway Protocol (BGP) for Internet backbone

– interior gateway protocols (IGP)

• distribute information inside autonomous systems, e.g. in LANs

• e.g., Routing Information Protocol (RIP)

• e.g., Open Shortest Path First (OSPF)

• autonomous means: under a single administrative control

Secure Software Programming 44

Automation Systems Group

Routing Protocols

RIP

RIP OSPF
BGP

BGP
BGP

LAN with

different

subnets

Secure Software Programming 45

Automation Systems Group

User Datagram Protocol

• UDP (User Datagram Protocol)

– based on IP

• Connectionless

– based on datagrams

• Best-effort service

– delivery

– non-duplication

– ordering are not guaranteed

• Unreliable (checksum optional)

Secure Software Programming 46

Automation Systems Group

UDP Message

• Port abstraction

– allows addressing different destinations for the same IP

• Often used for multimedia

– more efficient than TCP

– for services based on request/reply schema (DNS, NIS, NFS, RPC)

UDP source port (2 bytes) UDP destination port (2)

UDP message length (2) Checksum (2)

Data (up to 216)

Secure Software Programming 47

Automation Systems Group

Transmission Control Protocol

• TCP (Transmission Control Protocol)

– based on IP

• Connection-oriented

– based on streams

• Reliable service

– delivery

– non-duplication

– ordering are guaranteed

• Checksum mandatory

• Uses acknowledgements sent by receiver

Secure Software Programming 48

Automation Systems Group

TCP

• Provides port abstraction

– like UDP

• Allows two nodes to establish a virtual circuit

– identified with quadruples

<srcip, src_port, dstip, dst_port>

– virtual circuit is composed of two streams (full duplex)

• The pair <IP address, port> is called a socket

Secure Software Programming 49

Automation Systems Group

TCP Sequence Numbers

• Sequence number

– specifies the position of the segment data in the communication
stream

– (SEQ=1234 means: the payload of this segment contains data
starting from 1234)

• Acknowledgement number

– specifies the position of the next expected byte from the
communication partner

– (ACK=12345 means: I have received the bytes correctly to 12344, I
expect the next byte to be 12345).

• Both are used to manage error control

– retransmission, duplicate filtering

Secure Software Programming 50

Automation Systems Group

TCP Virtual Circuit Setup

• A server listens to a specific port

• Client sends a connection request to the server, with SYN flag

set and a random initial sequence number c

• The server answers with a segment marked with both the SYN

and ACK flags and containing

– an initial random sequence number s

– c+1 as the acknowledge number

• The client sends a segment with the ACK flag set and with

sequence number c+1 and ack number s+1

Secure Software Programming 51

Automation Systems Group

TCP Virtual Circuit Setup

• TCP Three way handshake

Server Client

srcport=12312, dstport=23,

seq = 6421, ack=0, SYN

srcport=23, dstport=12312,

seq = 11721, ack=6422, SYN,

ACK

srcport=12312, dstport=23,

seq = 6422, ack=11722, ACK

Secure Software Programming 52

Automation Systems Group

TCP Data Exchange

• Each TCP segment contains

– sequence number = ack number of last received packet

– ack number = sequence number of last correctly received segment

increase by the payload size of this segment

• A partner accepts a segment of the other partner only if the

numbers are inside the transmission window

• An empty segment may be used to acknowledge the received

data

• Packets with no payload and SYN or FIN set consume this

sequence number

Secure Software Programming 53

Automation Systems Group

TCP Data Exchange

Server Client
srcport=12312, dstport=23,

seq = 6422 (10 bytes), ack=

11722 , ACK

srcport=23, dstport=12312,

seq = 11722 (25 bytes),

ack=6432, ACK

srcport=12312, dstport=23,

seq = 6432 (100 bytes),

ack=11747, ACK

Secure Software Programming 54

Automation Systems Group

Virtual Circuit Shutdown

• One of the partners, e.g., A, wants to terminate its
stream
– sends a segment with the FIN flag set

• B answers with a segment with the ACK flag set

• From this point on, A will not send any data to B
– just acknowledge data sent by B with empty segments

• When B shuts its stream down, the virtual circuit is
considered closed

Secure Software Programming 55

Automation Systems Group

Sample TCP Connection

From To S A F Seq-Nr Ack-Nr Payload

192.168.0.1 192.168.0.2 1 0 0 4711 0 0

192.168.0.2 192.168.0.1 1 1 0 38001 4712 0

192.168.0.1 192.168.0.2 0 1 0 4712 38002 0

192.168.0.2 192.168.0.1 0 1 0 38002 4712 ‚Login:\n‘ 7

192.168.0.1 192.168.0.2 0 1 0 4712 38009 ‚s‘ 1

192.168.0.1 192.168.0.2 0 1 0 4713 38009 ‚e‘ 1

192.168.0.1 192.168.0.2 0 1 0 4714 38009 ‚c‘ 1

192.168.0.1 192.168.0.2 0 1 0 4715 38009 ‚\n‘ 1

192.168.0.2 192.168.0.1 0 1 0 38009 4716 0

192.168.0.1 192.168.0.2 0 0 1 4716 38009 0

192.168.0.2 192.168.0.1 0 1 0 38009 4717 0

192.168.0.2 192.168.0.1 0 0 1 38010 4717 0

