
Automation Systems Group

Unix Security Features

and

TCP/IP Primer

Secure Software Programming and Vulnerability Analysis

Christopher Kruegel

Secure Software Programming 2

Automation Systems Group

Unix Security Features

and

TCP/IP Primer



Secure Software Programming 3

Automation Systems Group

Unix Features

• Multi-user operating system

• Process

– implements user-activity

– entity that executes a given piece of code

– has its own execution stack, memory pages, and file

descriptors table

• Thread

– separate stack and program counter

– share memory pages and file descriptor table
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Unix - Process

• Process Attributes

– process ID (PID)

• uniquely identified process

– user ID (UID)

• ID of owner of process

– effective user ID (EUID)

• ID used for permission checks (e.g., to access resources)

– saved user ID (SUID)

• to temporarily drop and restore privileges

– lots of management information

• scheduling

• memory management, resource management
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Unix - User Model

• Unix is user-centric

– no roles

• User

– identified by user name (UID), group name (GID)

– authenticated by password (stored encrypted)

• User root
– superuser, system administrator

– special privileges (access resources, modify OS)

– cannot decrypt user passwords

Secure Software Programming 6

Automation Systems Group

Unix - Authentication

• Passwords
– user passwords are used as keys for crypt() function

– runs DES algorithm 25 times on a block of zeros

– 12-bit “salt”

• 4096 variations

• chosen from date, not secret

• prevent same passwords to map onto same string

• make dictionary attacks more difficult

• Password cracking
– dictionary attacks

– Crack, JohnTheRipper
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Unix - Authentication

/etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/false

daemon:x:2:2:daemon:/sbin:/bin/false

adm:x:3:4:adm:/var/adm:/bin/false

lp:x:4:7:lp:/var/spool/lpd:/bin/false

chris:AcPyurst9Bfgz1:1000:100:Chris Kruegel:/home/chris:/bin/bash

username   password  UID  GID  complete name  home-dir  login-shell
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Unix - Authentication

• Authentication

– prompt - /bin/login

– user provides name and password

– salt retrieved from /etc/password

– zero block is encrypted

– result compared to stored one

• Attacks

– fake logins

– tty tapping

– social engineering
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Unix - Authentication

• Shadow passwords
– password file is needed by many applications to map user ID

to user names

– encrypted passwords are not

• /etc/shadow

– holds encrypted passwords

– account information

• last change date

• expiration (warning, disabled)

• minimum change frequency

– readable only by superuser and privileged programs

– MD5 hashed passwords to slow down guessing

Secure Software Programming 10

Automation Systems Group

Unix - Group Model

• Users belong to one or more groups
– primary group (stored in /etc/password)

– additional groups (stored in /etc/group)

– possibility to set group password

– and become group member with newgrp

• /etc/group

root:x:0:root

bin:x:1:root,bin,daemon

users:x:100:chris

groupname : password : group id : additional users
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Unix - File System

• File tree

– primary repository of information

– hierarchical set of directories

– directories contain file system objects (FSO)

– root is denoted “/”

• File system object

– files, directories, symbolic links, sockets, device files

– referenced by inode (index node)
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Unix - File System

• File System Object Attributes

– type

– size

– reference counter

– position on disk (disk block list)

– UID and GID of owner

– access and modification times

– permission bits

– but no file name!

• Directory

– holds mapping between name and inode
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Unix - File System

• Access Control

– permission bits

– chmod, chown, chgrp, umask

– file listing:

files only delete-

able by owner

new files

have dir-gid

stat / execute

files, chdir

insert and

remove files
list filesDirectory

sticky bit
suid / sgid

inherit id
executewrite accessread accessFile

tsxwrType

         -    rwx     rwx     rwx

(file type) (user)  (group) (other)
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Unix - SUID Programs

• Each process has real and effective user / group ID

– usually identical

– real IDs

• determined by current user

• login, su

– effective IDs

• determine the “rights” of a process

• system calls (e.g., setuid())

• suid / sgid bits

– attractive target for attacker
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Unix - Resource Limits

• File system limits
– quotas

– restrict number of storage blocks and number of inodes

– hard limit

• can never be exceeded (operation fails)

– soft limit

• can be exceeded temporarily

– can be defined per mount-point

– defend against resource exhaustion (denial of service)

• Process resource limits
– number of child processes, open file descriptors
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Unix - Signals

• Signal
– simple form of interrupt

– asynchronous notification

– can happen anywhere for process in user space

– used to deliver segmentation faults, reload commands, …

– kill command

• Signal handling
– process can install signal handlers

– when no handler is present, default behavior is used

• ignore or kill process

– possible to catch all signals except SIGKILL (-9)
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Unix - Signals

• Security issues

– code has to be be re-entrant

• atomic modifications

• no global data structures

– race conditions

– unsafe library calls, system calls

• Secure signals

– write handler as simple as possible

– block signals in handler
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Unix - Communication

• Half-duplex pipes
– connect output of one process to input of another

– information flows uni-directional

– classic use in shell programming (via | character)

– represented by a file (inode) in kernel but not in file system

• Named pipes
– much like regular pipes

– exist as a device special file in the file system

– processes of different ancestry can share data

– when I/O is done by sharing processes, the named pipe
remains in the file system



Secure Software Programming 19

Automation Systems Group

Unix - Communication

• AT&T System V IPC
– inter-process communication primitives

– shared memory, semaphores, message queues

– standard access control mechanisms apply

• BSD Sockets
– mostly used for network connections

– local sockets possible

• e.g., to implement pipes

– appear as objects in file system

• but cannot use open

– more on sockets later in the TCP/IP section
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Unix - Shared Libraries

• Library

– collection of object files

– included into (linked) program as needed

– code reuse

•  Shared library

– multiple processes share a single library copy

– save disk space (program size is reduced)

– save memory space (only a single copy in memory)
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Unix - Shared Libraries

• Static shared library
– address binding at link-time

– not very flexible when library changes

– code is fast

• Dynamic shared library
– address binding at load-time

– procedure linkage table (PLT) and global offset table (GOT)

– code is slower (indirection)

– loading is slow (binding has to be done at run-time)

– management issues (semantic changes)

– classic .so or .dll libraries
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Unix - Shared Libraries

• Management

– stored in special directories (listed in /etc/ld.so.conf)

– manage cache with ldconfig

• Preload

– override (substitute) with other version

– use /etc/ld.so.preload

– can also use environment variables for override

– possible security hazard

– disabled for SUID programs
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TCP/IP Primer
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OSI Reference Model

• Developed by the ISO to support open systems interconnection

– layered architecture, level n uses service of (n-1)

       Host A         Host B

7 Application Layer Application Layer

6 Presentation Layer Presentation Layer

5 Session Layer Session Layer

4 Transport Layer Transport Layer

3 Network Layer Network Layer

2 Data Link Layer Data Link Layer

1 Physical Layer Physical Layer
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OSI Reference Model

• Physical Layer

– connect to channel / used to transmit bytes (= network cable)

• Data Link Layer

– error control between adjacent nodes

• Network Layer

– transmission and routing across subnets

• Transport Layer

– ordering

– multiplexing

– correctness
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OSI Reference Model

• Session Layer

– support for session based interaction

– e.g. communication parameters/communication state

• Presentation Layer

– standard data representation

• Application Layer

– application specific protocols
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TCP / IP

NIC

Ethernet

Internet Protocol (IP)

TCP

Telnet SMTP

TCP/IP OSI-Reference

Application

Transport

Network

Data Link Layer

Physical Layer

Secure Software Programming 28

Automation Systems Group

Internet

Internet

Host

Subnet

Subnet
Host

Host

Host

Host

Subnet

Host

PPP

(phone)
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Internet Protocol (IP)

• Is the glue between hosts of the Internet

• Standardized in RFC 791

• Packet-based service

– packets have a maximum size of 216 bytes

• Attributes of delivery

– connectionless

– unreliable best-effort datagram

• delivery, integrity, ordering, non-duplication are NOT

guaranteed
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Internet Protocol (IP)

• IP packets (datagrams) can be exchanged by any two nodes

that are set up as IP nodes (i.e., that have IP addresses)

• For point-to-point communication

–  IP is tunneled over lower level protocols

• Ethernet

• Token Ring

• FDDI

• PPP, etc.

• Standardized data ordering

– network byte-order = big endian

– x86 host byte-order = little endian
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IP Address

• IP addresses in IPv4 are 32 bit numbers

– (class+net+host ID)

• Each host has a unique IP address for each NIC

• Represented as dotted-decimal notation:

– 10000000 10000011 10101100 00000001 = 128.131.172.1

• Classes: <starts with>   <net-bits> <host-bits> <#of possible hosts>

• Class A: 0 7 24 16777216

• Class B: 10 14 16 65536

• Class C: 110 21 8 256

• Class D: 1110 special meaning: 28 bit multicast address

• Class E: 1111 reserved for future use
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IP Subnet

• It is often unrealistic to have networks with so many hosts

– further divide the hostbits into subnet ID and host ID

– saves address space

• Example: Class C normally has 24 netbits

Class C network with subnet mask 255.255.255.240

240 = 1111 0000

      |        host ID => 16 hosts within every subnet

        subnet ID => 16 subnets within this class C network
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IP - Direct Delivery

• If two hosts are in the same physical network the IP

datagram is encapsulated in a Layer 2 frame and

delivered directly

Host 1

(192.168.0.2)

Host 2

(192.168.0.3)

Host 3

(192.168.0.5)

Host 4

(192.168.0.81

)

Host 5

(192.168.0.99

)

Host 6

(192.168.0.7)
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IP Encapsulation

• IP packet included in Layer 2 frame

– e.g., Ethernet (RFC 894 - IP over Ethernet)

Frame Header Frame Data

IP Header IP Data

e.g. Ethernet
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Ethernet

• Widely used link layer protocol

• Carrier Sense, Multiple Access (CSMA) with Collision Detection

• Addresses: 48 bits (e.g. 00:38:af:23:34:0f)

• Frame

– 2 x 6 bytes addresses (destination and source)

– 2 bytes frame data type

• specifies encapsulated protocol, IP, ARP, RARP

– variable length data

– 4 bytes CRC

• Frame Length

– minimum of 64 bytes frame length

• padding may be needed

– maximum of 1518 bytes
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IP - Direct Delivery

Problem:

• Ethernet uses 48 bit addresses

• IP uses 32 bit addresses

• We want to send an IP datagram

but we only can use the Link Layer to do this
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ARP

• Solution - ARP (Address Resolution Protocol)

• Service at the link-level, RFC 826

• Maps IP network addresses to Ethernet link-level addresses

• Scenario:

– host A wants to know the Ethernet address associated with IP
address of host B

– A broadcasts ARP message on physical link (including its own
mapping)

– B answers A with ARP answer message

• Mappings are cached

– arp -a shows mapping
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Fragmentation

• Fragmentation

– when datagram size is larger than data link layer MTU (Maximum

Transmission Unit)

– performed at

• source host

• or intermediate steps (e.g., routers)

• Reassembly

– rebuilding the IP packet

– only performed at the destination

• Each fragment is delivered as a separate datagram
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IP - Indirect Delivery

• Routing

– needed if hosts are in different physical networks

– packet can‘t be delivered directly

• Packet is forwarded to a router (gateway)

– router has access to other network(s)

– router decides upon destination where to send the packet next

– this is repeated until packet arrives at network with target host

– then direct delivery is performed

– link level addresses change at every step, also TTL field
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IP - Indirect Delivery

Internet

Host

Host

Host

Host

Host

Host

Host

Host

• Store and forward communication
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Routing Table

• Contains information how to do hop-by hop routing

% route -n

Kernel IP routing table

Destination Gateway Genmask Flags Iface

192.168.1.0 0.0.0.0 255.255.255.0 U eth0

loopback 127.0.0.1 255.0.0.0 UG lo

0.0.0.0 192.168.1.1 0.0.0.0 UG eth0

• Flags:

– U: the route is up

– G: use gateway for destination
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Routing Mechanism

• Route-daemon searches for

– matching host address

– matching network address

– default entry

• If no route can be found: ICMP message

– „Host unreachable“ is sent back to originator

• Routing tables can be set

– statically

– dynamically (using routing protocols)
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Routing Protocols

• automatically distribute information about delivery routes

• hierarchically organized with different scope

• divided in

– exterior gateway protocols (EGPs)

• distribute information between different autonomous systems

• e.g., Border Gateway Protocol (BGP) for Internet backbone

– interior gateway protocols (IGP)

• distribute information inside autonomous systems, e.g. in LANs

• e.g., Routing Information Protocol (RIP)

• e.g., Open Shortest Path First (OSPF)

• autonomous means: under a single administrative control
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Routing Protocols

RIP

RIP OSPF
BGP

BGP
BGP

LAN with

different

subnets
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User Datagram Protocol

• UDP (User Datagram Protocol)

– based on IP

• Connectionless

– based on datagrams

• Best-effort service

– delivery

– non-duplication

– ordering are not guaranteed

• Unreliable (checksum optional)
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UDP Message

• Port abstraction

– allows addressing different destinations for the same IP

• Often used for multimedia

– more efficient than TCP

– for services based on request/reply schema (DNS, NIS, NFS, RPC)

UDP source port (2 bytes) UDP destination port (2)

UDP message length (2) Checksum (2)

Data (up to 216)
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Transmission Control Protocol

• TCP (Transmission Control Protocol)

– based on IP

• Connection-oriented

– based on streams

• Reliable service

– delivery

– non-duplication

– ordering are guaranteed

• Checksum mandatory

• Uses acknowledgements sent by receiver
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TCP

• Provides port abstraction

– like UDP

• Allows two nodes to establish a virtual circuit

– identified with quadruples

<srcip, src_port, dstip, dst_port>

– virtual circuit is composed of two streams (full duplex)

• The pair <IP address, port> is called a socket
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TCP Sequence Numbers

• Sequence number

– specifies the position of the segment data in the communication
stream

– (SEQ=1234 means: the payload of this segment contains data
starting from 1234)

• Acknowledgement number

– specifies the position of the next expected byte from the
communication partner

– (ACK=12345 means: I have received the bytes correctly to 12344, I
expect the next byte to be 12345).

• Both are used to manage error control

– retransmission, duplicate filtering
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TCP Virtual Circuit Setup

• A server listens to a specific port

• Client sends a connection request to the server, with SYN flag

set and a random initial sequence number c

• The server answers with a segment marked with both the SYN

and ACK flags and containing

– an initial random sequence number s

– c+1 as the acknowledge number

• The client sends a segment with the ACK flag set and with

sequence number c+1 and ack number s+1
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TCP Virtual Circuit Setup

• TCP Three way handshake

Server Client

srcport=12312, dstport=23,

seq = 6421, ack=0, SYN

srcport=23, dstport=12312,

seq = 11721, ack=6422, SYN,

ACK

srcport=12312, dstport=23,

seq = 6422, ack=11722, ACK
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TCP Data Exchange

• Each TCP segment contains

– sequence number = ack number of last received packet

– ack number = sequence number of last correctly received segment

increase by the payload size of this segment

• A partner accepts a segment of the other partner only if the

numbers are inside the transmission window

• An empty segment may be used to acknowledge the received

data

• Packets with no payload and SYN or FIN set consume this

sequence number
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TCP Data Exchange

Server Client
srcport=12312, dstport=23,

seq = 6422 (10 bytes), ack=

11722 , ACK

srcport=23, dstport=12312,

seq = 11722 (25 bytes),

ack=6432, ACK

srcport=12312, dstport=23,

seq = 6432 (100 bytes),

ack=11747, ACK
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Virtual Circuit Shutdown

• One of the partners, e.g., A, wants to terminate its
stream
– sends a segment with the FIN flag set

• B answers with a segment with the ACK flag set

• From this point on, A will not send any data to B
– just acknowledge data sent by B with empty segments

• When B shuts its stream down, the virtual circuit is
considered closed
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Sample TCP Connection

From       To  S A F Seq-Nr     Ack-Nr Payload

192.168.0.1  192.168.0.2 1   0  0   4711                 0 0

192.168.0.2  192.168.0.1 1   1  0   38001            4712 0

192.168.0.1  192.168.0.2 0   1  0   4712        38002 0

192.168.0.2  192.168.0.1 0   1  0 38002        4712             ‚Login:\n‘ 7

192.168.0.1  192.168.0.2 0   1  0 4712        38009 ‚s‘ 1

192.168.0.1  192.168.0.2 0   1  0 4713        38009 ‚e‘ 1

192.168.0.1  192.168.0.2 0   1  0 4714        38009 ‚c‘ 1

192.168.0.1  192.168.0.2 0   1  0 4715        38009 ‚\n‘ 1

192.168.0.2  192.168.0.1 0   1  0 38009        4716 0

192.168.0.1  192.168.0.2 0   0  1 4716        38009 0

192.168.0.2  192.168.0.1 0   1  0 38009        4717 0

192.168.0.2  192.168.0.1 0   0  1 38010        4717 0


