Automation Systems Group

Secure Software Programming and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris

Automation Systems Group

Operations and

Denial of Service

Overview

Automation Systems Group

- Security issues at various stages of application life-cycle
 - mistakes, vulnerabilities, and exploits
 - avoidance, detection, and defense
- Architecture
 - security considerations when designing the application
- Implementation
 - security considerations when writing the application
- Operation
 - security considerations when the application is in production

Secure Software Programming

Overview

Automation Systems Group

- Separation of development and operations staff
 - people are unaware of problems and risks in the other domain
 - for example, a developer considers the OS and network secure
- Running secure applications on insecure OS, or vice versa
- Attackers choose path of least resistance
 - go for the underlying infrastructure if easier
- Ensure that application can be deployed in a safe environment
- Security is everybody's problem

Operations

Automation Systems Group

- Besides direct access to applications, attacker can try alternative paths
- Administrative access can be a problem
 - standard remote access (e.g., ssh, telnet)
 - usually reachable from within the whole enterprise
 - convenient
 - often not as well protected
 - attacker can obtain access at the OS level and circumvent application defense
 - user-level access at OS level is a problem too

Secure Software Programming

Operations

Automation Systems Group

- Besides direct access to applications, attacker can try alternative paths
- Administrative access can be a problem
 - standard remote access (e.g., ssh, telnet)
 - usually reachable from within the whole enterprise
 - convenient
 - often not as well protected
 - attacker can obtain access at the OS level and circumvent application defense
 - user-level access at OS level is a problem too

Operations

Automation Systems Group

- Good practice takes a holistic approach
 - all aspects are equally important
- 1. Secure the network
- 2. Secure the operating system
- 3. Deploy application with diligence
- 4. Follow good operational practice

Secure Software Programming

Secure the Network

Automation Systems Group

- Allow essential network services only
 - good firewall configuration
 - be careful when multiple interfaces are in use
- Use secure protocols
 - obviously, no clear text protocols
 - administrative access should be at least as secure as application
- Separate production data from management data
 - use two separate networks
 - also good in case of denial of service attacks

Secure the Network

Automation Systems Group

- Monitor for unauthorized activities
 - deploy intrusion detection systems
 - at least, on network level (e.g., Snort)
 - if you monitor bad behavior, don't flame the source immediately could be spoofed source, or misconfigurations
- Defense in depth
 - use multiple layers of defense
 - firewall, tightened switches, IDS, personal firewalls
- Log events
 - detection, but also accountability and forensics
 - log on dedicated (hardened, stealth) machine

Secure Software Programming

9

Secure the Operating System

- Secure baseline
 - after initial installation, harden the OS
 - turn off unwanted network services
 - remove daemons from startup scripts
 - local firewall
 - tighten file access control
 - use principle of least privilege
 - remove unwanted binaries
 no compiler on a Web server
 - install latest patches
 - make installation process repeatable

Deploy Application with Diligence

Automation Systems Group

- Set up correct file permissions
 - especially for configuration files
- Enable event logging
 - make sure that someone reads these logs
 - send regularly an email summary to administrator
- Use compartmentalization
 - chroot() is common
 - privilege separation with different users
- Also applies to third-party code

Secure Software Programming

Good Operational Practice

Automation Systems Group

- Manage privileges
 - use different roles, users, and groups
 - developers, users, and operational staff can get different privileges
- Manage user accounts
 - centralized account management
 - also check for application / database accounts
- Treat temporary or contract personal appropriately
 - shared accounts for all temporaries results in loss of accountability

Good Operational Practice

Automation Systems Group

- Configuration and patch management
 - use standardized configuration tools and procedures
 - not only consider reliability and stability an issue
 - patch also production machines
- Test your configuration
 - changes to configurations and patches might break applications
 - previously test these changes
 - separate test network is convenient
 - if too expensive, use virtual machine software (VMware, bochs)

Secure Software Programming

13

Good Operational Practice

- Conduct backups securely
 - doing backups is vital for every data center
 - storing the backups off-site is even better
 - but, the data needs to be transported and stored securely
- Threat and risk analysis
 - who could attack, how could the attack happen, what are the assets
- Incident handling plans
 - what happens in case of an attack
 - backup systems, shut down operations

Good Operational Practice

Automation Systems Group

- Stay current
 - invest time to familiarize yourself with security issues
- Perform audits
 - code reviews
 - penetration tests
 - request external opinions
- Avoid mission creep

"every firewall become useless after some time as more and more rules are added"

• Don't pass the buck or do shortcuts because it is easier

Secure Software Programming

15

Automation Systems Group

Operations

and Denial of Service

Automation Systems Group

- Definition
 - explicit attempt by attackers to prevent legitimate users of a service from using that service
 - not all service outages (even those that result from malicious activity) are necessarily denial of service attacks
- Examples
 - attempts to "flood" a network, thereby preventing legitimate network traffic
 - attempts to disrupt connections between two machines, thereby preventing access to a service
 - attempts to disrupt service to a specific system or person

Secure Software Programming

17

Denial of Service

- Impact
 - disable computer or network
 - depending on organization, disabling complete organization
- Asymmetric denial of service (DoS)
 - attacker uses only limited resources against a large victim
- Modes of Attack
 - 1. consumption of scare, limited, or non-renewable resources
 - 2. destruction or alteration of configuration information
 - 3. physical destruction or alteration of (network) components

Automation Systems Group

- 1. Consumption of scare, limited, or non-renewable resources
 - computers and networks require certain things to operate properly: CPU time, bandwidth, memory, access to other computers, and environmental resources (e.g., power)
 - 1. network connectivity
 - consume entries in the receive queue (SYN attack)
 - 2. consume bandwidth
 - send a lot of packets
 - 3. use victim resources against itself
 - connect chargen and echo services
 - smurf attack

Secure Software Programming

19

Denial of Service

Automation Systems Group

- 4. fill file system with data or files (to use up inodes)
 - anonymous ftp servers
 - systems without quota
- 5. generate excessive amount of log entries
- 6. generate excessive amount of mail messages
- 7. generate excessive amounts of processes

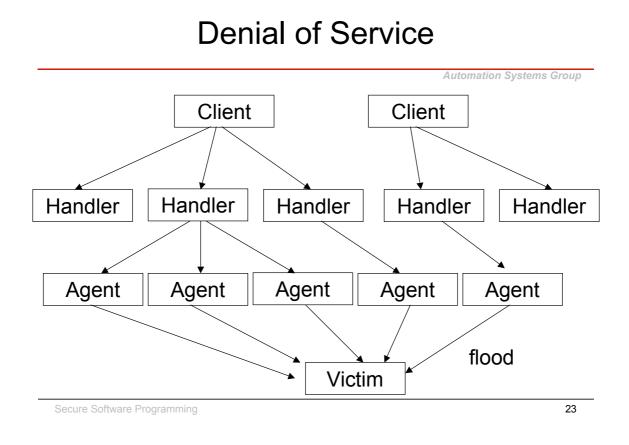
fork bombs

- 8. exploit lock-out scheme
 - account disabling after a few attempts
- 9. sending input that crashes OS or applications
 - WinNuke

Automation Systems Group

- 2. Destruction or alteration of configuration information
 - change router information
 - change Windows Registry information
- 3. Physical destruction or alteration of (network) components
 - cut wires
 - blow up NOC (network operation center)

Secure Software Programming


21

Denial of Service

Automation Systems Group

- Many tools for DoS available
- Especially for distributed denial of service (DDoS)
- Distributed denial of service
 - many coordinated attackers overflow one victim
 - Trinoo, Stacheldraht, Tribal Flood Network (TFN)
- Stacheldraht
 - involved hosts:
 - client hosts: are used to control handlers (1:n relationship)
 - handler hosts: are used to control agents (1:n relationship), n < 1000
 - agent hosts: send the ICMP echo request to the victim
 - all communication is encrypted (TCP + ICMP)

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

- Defense mechanisms
 - difficult to do locally
 - especially with spoofed source addresses and changing content
 - traffic shaping
 - rate limit incoming traffic
 - use well-configured firewalls
 - infrastructural techniques
 - cooperating routers
 - push back
 - path identification
 - client puzzles
 - client has to solve a resource intensive task to continue communication

Automation Systems Group

Syn cookies

- technique to prevent syn floods
- particular choice of initial 32 bit TCP sequence number
- top 5 bits
 - t mod 32, where t is a 32-bit time counter that increases every 64 seconds
- next 3 bits
 - an encoding of an MSS selected by the server in response to the client's MSS
- bottom 24 bits
 - a server-selected secret function of the client IP address and port number, the server IP address and port number, and t.
- no "receive queue" needed anymore
- when second packet from client is received (finishing 3-way handshake),
 just check for validity of ack value

Secure Software Programming

25

Summary

- Operations
 - 1. Secure the network
 - 2. Secure the operating system
 - 3. Deploy application with diligence
 - 4. Follow good operational practice
- Denial of service
 - explicit attempt by attackers to prevent legitimate users of a service from using that service
 - 1. consumption of scare, limited, or non-renewable resources
 - 2. destruction or alteration of configuration information
 - 3. physical destruction or alteration of (network) components