
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Operations

 and

Denial of Service

Secure Software Programming 3

Automation Systems Group

Overview

• Security issues at various stages of application life-cycle

– mistakes, vulnerabilities, and exploits

– avoidance, detection, and defense

• Architecture

– security considerations when designing the application

• Implementation

– security considerations when writing the application

• Operation

– security considerations when the application is in production

Secure Software Programming 4

Automation Systems Group

Overview

• Separation of development and operations staff

– people are unaware of problems and risks in the other domain

– for example, a developer considers the OS and network secure

• Running secure applications on insecure OS, or vice versa

• Attackers choose path of least resistance

– go for the underlying infrastructure if easier

• Ensure that application can be deployed in a safe environment

! Security is everybody’s problem

Secure Software Programming 5

Automation Systems Group

Operations

• Besides direct access to applications, attacker can try
alternative paths

• Administrative access can be a problem

– standard remote access (e.g., ssh, telnet)

– usually reachable from within the whole enterprise

– convenient

– often not as well protected

– attacker can obtain access at the OS level and

circumvent application defense

– user-level access at OS level is a problem too

Secure Software Programming 6

Automation Systems Group

Operations

• Besides direct access to applications, attacker can try
alternative paths

• Administrative access can be a problem

– standard remote access (e.g., ssh, telnet)

– usually reachable from within the whole enterprise

– convenient

– often not as well protected

– attacker can obtain access at the OS level and

circumvent application defense

– user-level access at OS level is a problem too

Secure Software Programming 7

Automation Systems Group

Operations

• Good practice takes a holistic approach

– all aspects are equally important

1. Secure the network

2. Secure the operating system

3. Deploy application with diligence

4. Follow good operational practice

Secure Software Programming 8

Automation Systems Group

Secure the Network

• Allow essential network services only

– good firewall configuration

– be careful when multiple interfaces are in use

• Use secure protocols

– obviously, no clear text protocols

– administrative access should be at least as secure as application

• Separate production data from management data

– use two separate networks

– also good in case of denial of service attacks

Secure Software Programming 9

Automation Systems Group

Secure the Network

• Monitor for unauthorized activities

– deploy intrusion detection systems

– at least, on network level (e.g., Snort)

– if you monitor bad behavior, don’t flame the source immediately

could be spoofed source, or misconfigurations

• Defense in depth

– use multiple layers of defense

– firewall, tightened switches, IDS, personal firewalls

• Log events

– detection, but also accountability and forensics

– log on dedicated (hardened, stealth) machine

Secure Software Programming 10

Automation Systems Group

Secure the Operating System

• Secure baseline

– after initial installation, harden the OS

– turn off unwanted network services

• remove daemons from startup scripts

• local firewall

– tighten file access control

• use principle of least privilege

– remove unwanted binaries

• no compiler on a Web server

– install latest patches

– make installation process repeatable

Secure Software Programming 11

Automation Systems Group

Deploy Application with Diligence

• Set up correct file permissions

– especially for configuration files

• Enable event logging

– make sure that someone reads these logs

– send regularly an email summary to administrator

• Use compartmentalization

– chroot() is common

– privilege separation with different users

• Also applies to third-party code

Secure Software Programming 12

Automation Systems Group

Good Operational Practice

• Manage privileges

– use different roles, users, and groups

– developers, users, and operational staff can get different privileges

• Manage user accounts

– centralized account management

– also check for application / database accounts

• Treat temporary or contract personal appropriately

– shared accounts for all temporaries results in loss of accountability

Secure Software Programming 13

Automation Systems Group

Good Operational Practice

• Configuration and patch management

– use standardized configuration tools and procedures

– not only consider reliability and stability an issue

– patch also production machines

• Test your configuration

– changes to configurations and patches might break applications

– previously test these changes

– separate test network is convenient

– if too expensive, use virtual machine software (VMware, bochs)

Secure Software Programming 14

Automation Systems Group

Good Operational Practice

• Conduct backups securely

– doing backups is vital for every data center

– storing the backups off-site is even better

– but, the data needs to be transported and stored securely

• Threat and risk analysis

– who could attack, how could the attack happen, what are the assets

• Incident handling plans

– what happens in case of an attack

– backup systems, shut down operations

Secure Software Programming 15

Automation Systems Group

Good Operational Practice

• Stay current

– invest time to familiarize yourself with security issues

• Perform audits

– code reviews

– penetration tests

– request external opinions

• Avoid mission creep

“every firewall become useless after some time as more and more rules are added”

• Don’t pass the buck or do shortcuts because it is easier

Secure Software Programming 16

Automation Systems Group

Operations

 and

Denial of Service

Secure Software Programming 17

Automation Systems Group

Denial of Service

• Definition

– explicit attempt by attackers to prevent legitimate users of a

service from using that service

– not all service outages (even those that result from

malicious activity) are necessarily denial of service attacks

• Examples

– attempts to "flood" a network, thereby preventing legitimate

network traffic

– attempts to disrupt connections between two machines, thereby

preventing access to a service

– attempts to disrupt service to a specific system or person

Secure Software Programming 18

Automation Systems Group

Denial of Service

• Impact

– disable computer or network

– depending on organization, disabling complete organization

• Asymmetric denial of service (DoS)

– attacker uses only limited resources against a large victim

• Modes of Attack

1. consumption of scare, limited, or non-renewable resources

2. destruction or alteration of configuration information

3. physical destruction or alteration of (network) components

Secure Software Programming 19

Automation Systems Group

Denial of Service

1. Consumption of scare, limited, or non-renewable resources

– computers and networks require certain things to operate properly:

CPU time, bandwidth, memory, access to other computers, and

environmental resources (e.g., power)

1. network connectivity

• consume entries in the receive queue (SYN attack)

2. consume bandwidth

• send a lot of packets

3. use victim resources against itself

• connect chargen and echo services

• smurf attack

Secure Software Programming 20

Automation Systems Group

Denial of Service

4. fill file system with data or files (to use up inodes)

• anonymous ftp servers

• systems without quota

5. generate excessive amount of log entries

6. generate excessive amount of mail messages

7. generate excessive amounts of processes

• fork bombs

8. exploit lock-out scheme

• account disabling after a few attempts

9. sending input that crashes OS or applications

• WinNuke

Secure Software Programming 21

Automation Systems Group

Denial of Service

2. Destruction or alteration of configuration information

– change router information

– change Windows Registry information

3. Physical destruction or alteration of (network) components

• cut wires

• blow up NOC (network operation center)

Secure Software Programming 22

Automation Systems Group

Denial of Service

• Many tools for DoS available

• Especially for distributed denial of service (DDoS)

• Distributed denial of service

– many coordinated attackers overflow one victim

– Trinoo, Stacheldraht, Tribal Flood Network (TFN)

• Stacheldraht

– involved hosts:

• client hosts: are used to control handlers (1:n relationship)

• handler hosts: are used to control agents (1:n relationship), n < 1000

• agent hosts: send the ICMP echo request to the victim

– all communication is encrypted (TCP + ICMP)

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

Secure Software Programming 23

Automation Systems Group

Denial of Service

Client Client

Handler Handler Handler Handler Handler

Agent Agent Agent Agent Agent

Victim
flood

Secure Software Programming 24

Automation Systems Group

Denial of Service

• Defense mechanisms

– difficult to do locally

– especially with spoofed source addresses and changing content

– traffic shaping

• rate limit incoming traffic

• use well-configured firewalls

– infrastructural techniques

• cooperating routers

• push back

• path identification

– client puzzles

• client has to solve a resource intensive task to continue communication

Secure Software Programming 25

Automation Systems Group

Denial of Service

• Syn cookies

– technique to prevent syn floods

– particular choice of initial 32 bit TCP sequence number

– top 5 bits

• t mod 32, where t is a 32-bit time counter that increases every 64 seconds

– next 3 bits

• an encoding of an MSS selected by the server in response to the client's MSS

– bottom 24 bits

• a server-selected secret function of the client IP address and port number, the

server IP address and port number, and t.

– no “receive queue” needed anymore

– when second packet from client is received (finishing 3-way handshake),

just check for validity of ack value

Secure Software Programming 26

Automation Systems Group

Summary

• Operations

1. Secure the network

2. Secure the operating system

3. Deploy application with diligence

4. Follow good operational practice

• Denial of service

– explicit attempt by attackers to prevent legitimate users of a

service from using that service

1. consumption of scare, limited, or non-renewable resources

2. destruction or alteration of configuration information

3. physical destruction or alteration of (network) components

