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Overview

• When system is designed and implemented

– correctness has to be tested

• Different types of tests are necessary

– validation

• is the system designed correctly?

• does the design meet the problem requirements?

– verification

• is the system implemented correctly?

• does the implementation meet the design requirements?

• Different features can be tested

– functionality, performance, security
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Testing

• Edsger Dijkstra

Program testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence.

• Testing

– analysis that discovers what is and compares it to what should be

– should be done throughout the development cycle

– necessary process

– but not a substitute for sound design and implementation

– for example, running public attack tools against a server cannot

proof that server is implemented secure
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Testing

• Classification of testing techniques

– white-box testing

• testing all the implementation

• path coverage considerations

• faults of commission

• find implementation flaws

• but cannot guarantee that specifications are fulfilled

– black-box testing

• testing against specification

• only concerned with input and output

• faults of omissions

• specification flaws are detected

• but cannot guarantee that implementation is correct
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Testing

• Classification of testing techniques

– static testing

• check requirements and design documents

• perform source code auditing

• theoretically reason about (program) properties

• cover a possible infinite amount of input (e.g., use ranges)

• no actual code is executed

– dynamic testing

• feed program with input and observe behavior

• check a certain number of input and output values

• code is executed (and must be available)
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Testing

• Automatic testing

– testing should be done continuously

– involves a lot of input, output comparisons, and test runs

– therefore, ideally suitable for automation

– testing hooks are required, at least at module level

– nightly builds with tests for complete system are advantageous

• Regression tests

– test designed to check that a program has not "regressed”,

that is, that previous capabilities have not been compromised by

 introducing new ones
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Testing

• Software fault injection

– go after effects of bugs instead of bugs

– reason is that bugs cannot be completely removed

– thus, make program fault-tolerant

– failures are deliberately injected into code

– effects are observed and program is made more robust

• Most techniques can be used to identify security problems
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Security Testing

• Design level

– not much tool support available

– manual design reviews

– formal methods

– attack graphs

• Formal methods

– formal specification that can be mathematically described and verified

– often used for small, safety-critical programs

e.g., control program for nuclear power plant

– state and state transitions must be formalized and

unsafe states must be described

– model checker can ensure that no unsafe state is reached
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Security Testing

• Attack graph

– given

• a finite state model, M, of a network

• a security property !

– an attack is an execution of M that violates !

– an attack graph is a set of attacks of M

• Attack graph generation

– done by hand

• error prone and tedious

• impractical for large systems

– automatic generation

• provide state description

• transition rules
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Security Testing

Sandia Red Team “White Board” attack graph

from DARPA CC20008 Information battle space

preparation experiment
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Security Testing

! = Attacker gains root access to Host 1.

4 hosts

30 actions
310 nodes
3400 edges
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Security Testing

• Implementation Level

– detect known set of problems and security bugs

– more automatic tool support available

– target particular flaws

– reviewing (auditing) software for flaws is reasonably

well-known and well-documented

– support for static and dynamic analysis

– ranges from “how-to” for manual code reviewing to

elaborate model checkers or compiler extension
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Static Security Testing

• Manual auditing

– code has to support auditing

• architectural overview

• comments

• functional summary for each method

– OpenBSD is well know for good auditing process

• 6 -12 members since 1996

• comprehensive file-by-file analysis

• multiple reviews by different people

• search for bugs in general

• proactive fixes
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Static Security Testing

• Manual auditing

– tedious and difficult task

– other initiatives were less successful

• Sardonix

“Reviewing old code is tedious and boring and no one wants to do it,”

 Crispin Cowan said.

• Linux Security Audit Project (LSAP)

Statistics for All Time

Lifespan |   Rank|Page Views|D/l|Bugs|Support|Patches|Trkr|Tasks

1459 days|0(0.00)|     4,887|  0|0(0)|   0(0)|   0(0)|0(0)| 0(0)
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Static Security Testing

• Syntax checker

– parse source code and check for functions that have known

vulnerabilities, e.g., strcpy(), strcat()

– also limited support for arguments (e.g., variable, static string)

– only suitable as first basic check

– cannot understand more complex relationships

– no control flow or data flow analysis

– Examples

• flawfinder

• RATS (rough auditing tool for security)

• ITS4
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Static Security Testing

• Annotation-based systems

– programmer uses annotations to specify properties in the source

code (e.g., this value must not be NULL)

– analysis tool checks source code to find possible violations

– control flow and data flow analysis is performed

– problems are undecidable in general, therefore

trade-off between correctness and completeness

– Examples

• SPlint

• Eau-claire

• UNO (uninitialized vars, null-ptr dereferencing, out-of-bounds access)
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Static Security Testing

• Model-checking

– programmer specifies security properties that have to hold

– models realized as state machines

– statements in the program result in state transitions

– certain states are considered insecure

– usually, control flow and data flow analysis is performed

– example properties

• drop privileges properly

• race conditions

• creating a secure chroot jail

– examples

• MOPS (an infrastructure for examining security properties of software)
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Static Security Testing

• Meta-compilation

– programmer adds simple system-specific compiler extensions

– these extensions check (or optimize) the code

– flow-sensitive, inter-procedural analysis

– not sound, but can detect many bugs

– no annotations needed

– example extensions

• system calls must check user pointers for validity before using them

• disabled interrupts must be re-enabled

• to avoid deadlock, do not call a blocking function with interrupts disabled

– examples

• Dawson Engler (Stanford)
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Static Security Testing

• Model-checking versus Meta-compilation (Engler ‘03)

• General perception

– static analysis: easy to apply but shallow bugs

– model checking: harder, but strictly better once done

• ccNUMA with cache coherence protocols in software

– 1 bug deadlocks entire machine

– code with many ad hoc correctness rules

• WAIT_FOR_DB_FULL must precede MISCBUS_READ_DB

– but they have a clear mapping to source code

– easy to check with compiler
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Static Security Testing

• Meta-compilation

– scales

– relatively precise

– statically found 34 bugs, although code tested for 5 years

– however, many deeper properties are missed

• Deeper properties

– nodes never overflow their network queues

– sharing list empty for dirty lines

– nodes do not send messages to themselves

• Perfect application for model checking

– bugs depend on intricate series of low-probability events

– self-contained system that generates its own events
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Static Security Testing

• The (known) problem

– writing model is hard

– someone did it for a similar protocol than ccNUMA

• several months effort

• no bugs

– use correspondence to auto-extract model from code

• Result

– 8 errors

– two deep errors, but 6 bugs found with static analysis as well.

• Myth: model checking will find more bugs

– in reality, 4x fewer
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Static Security Testing

• Where meta-compilation is superior

Static analysis      Model checking

                         Compile ! Check               Run ! Check

Don’t understand?   So what.                       Problem.
Can’t run?               So what.                       Can’t play.
Coverage?        All paths!  All paths!         Executed paths.

First question: “How big is code?”        “What does it do?”
Time:  Hours.          Weeks.

Bug counts 100-1000s 0-10s
Big code: 10MLOC 10K

No results?             Surprised.                    Less surprised.
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Static Security Testing

• Where model-checking is superior

• Subtle errors

– run code, so can check its implications

– data invariants, feedback properties, global properties

– static better at checking properties in code

– model checking better at checking properties implied by code

• End-to-end

– catch bug no matter how it is generated

– static detects ways to cause error

– model checking checks for the error itself
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Dynamic Security Testing

• Run-time checking between operating system and program

– intercept and check system calls

• Run-time checking between libraries and program

– intercept and check library functions

– often used to detect memory problems

• interception of malloc() and free() calls

• emulation of heap behavior and code instrumentation

• purify, valgrind

– also support for buffer overflow detection

• libsafe
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Dynamic Security Testing

• Profiling

– record the dynamic behavior of applications with respect to

interesting properties

• Obviously interesting to tune performance

– gprof

• But also useful for improving security

– sequences of system calls

– system call arguments

– same for function calls
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Dynamic Security Testing

• Penetration testing

– explicitly trying to break applications security

– general tool support available

• nessus

• ISS Internet Scanner

• nmap

– also tools for available that can test a particular protocol

• whisker

• ISS Database scanner
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Summary

• Testing

– important part of regular software life-cycle

– but also important to ensure a certain security standard

• Important at design and implementation level

– design

• attack graphs, formal methods, manual reviews

– implementation

• static and dynamic techniques

• Static techniques

– code review, syntax checks, model checking, meta-compilation

• Dynamic techniques

– system call and library function interposition, profiling


