
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Testing and

Source Code Auditing

Secure Software Programming 3

Automation Systems Group

Overview

• When system is designed and implemented

– correctness has to be tested

• Different types of tests are necessary

– validation

• is the system designed correctly?

• does the design meet the problem requirements?

– verification

• is the system implemented correctly?

• does the implementation meet the design requirements?

• Different features can be tested

– functionality, performance, security

Secure Software Programming 4

Automation Systems Group

Testing

• Edsger Dijkstra

Program testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence.

• Testing

– analysis that discovers what is and compares it to what should be

– should be done throughout the development cycle

– necessary process

– but not a substitute for sound design and implementation

– for example, running public attack tools against a server cannot

proof that server is implemented secure

Secure Software Programming 5

Automation Systems Group

Testing

• Classification of testing techniques

– white-box testing

• testing all the implementation

• path coverage considerations

• faults of commission

• find implementation flaws

• but cannot guarantee that specifications are fulfilled

– black-box testing

• testing against specification

• only concerned with input and output

• faults of omissions

• specification flaws are detected

• but cannot guarantee that implementation is correct

Secure Software Programming 6

Automation Systems Group

Testing

• Classification of testing techniques

– static testing

• check requirements and design documents

• perform source code auditing

• theoretically reason about (program) properties

• cover a possible infinite amount of input (e.g., use ranges)

• no actual code is executed

– dynamic testing

• feed program with input and observe behavior

• check a certain number of input and output values

• code is executed (and must be available)

Secure Software Programming 7

Automation Systems Group

Testing

• Automatic testing

– testing should be done continuously

– involves a lot of input, output comparisons, and test runs

– therefore, ideally suitable for automation

– testing hooks are required, at least at module level

– nightly builds with tests for complete system are advantageous

• Regression tests

– test designed to check that a program has not "regressed”,

that is, that previous capabilities have not been compromised by

 introducing new ones

Secure Software Programming 8

Automation Systems Group

Testing

• Software fault injection

– go after effects of bugs instead of bugs

– reason is that bugs cannot be completely removed

– thus, make program fault-tolerant

– failures are deliberately injected into code

– effects are observed and program is made more robust

• Most techniques can be used to identify security problems

Secure Software Programming 9

Automation Systems Group

Security Testing

• Design level

– not much tool support available

– manual design reviews

– formal methods

– attack graphs

• Formal methods

– formal specification that can be mathematically described and verified

– often used for small, safety-critical programs

e.g., control program for nuclear power plant

– state and state transitions must be formalized and

unsafe states must be described

– model checker can ensure that no unsafe state is reached

Secure Software Programming 10

Automation Systems Group

Security Testing

• Attack graph

– given

• a finite state model, M, of a network

• a security property !

– an attack is an execution of M that violates !

– an attack graph is a set of attacks of M

• Attack graph generation

– done by hand

• error prone and tedious

• impractical for large systems

– automatic generation

• provide state description

• transition rules

Secure Software Programming 11

Automation Systems Group

Security Testing

Sandia Red Team “White Board” attack graph

from DARPA CC20008 Information battle space

preparation experiment

Secure Software Programming 12

Automation Systems Group

Security Testing

! = Attacker gains root access to Host 1.

4 hosts

30 actions
310 nodes
3400 edges

Secure Software Programming 13

Automation Systems Group

Security Testing

• Implementation Level

– detect known set of problems and security bugs

– more automatic tool support available

– target particular flaws

– reviewing (auditing) software for flaws is reasonably

well-known and well-documented

– support for static and dynamic analysis

– ranges from “how-to” for manual code reviewing to

elaborate model checkers or compiler extension

Secure Software Programming 14

Automation Systems Group

Static Security Testing

• Manual auditing

– code has to support auditing

• architectural overview

• comments

• functional summary for each method

– OpenBSD is well know for good auditing process

• 6 -12 members since 1996

• comprehensive file-by-file analysis

• multiple reviews by different people

• search for bugs in general

• proactive fixes

Secure Software Programming 15

Automation Systems Group

Static Security Testing

• Manual auditing

– tedious and difficult task

– other initiatives were less successful

• Sardonix

“Reviewing old code is tedious and boring and no one wants to do it,”

 Crispin Cowan said.

• Linux Security Audit Project (LSAP)

Statistics for All Time

Lifespan | Rank|Page Views|D/l|Bugs|Support|Patches|Trkr|Tasks

1459 days|0(0.00)| 4,887| 0|0(0)| 0(0)| 0(0)|0(0)| 0(0)

Secure Software Programming 16

Automation Systems Group

Static Security Testing

• Syntax checker

– parse source code and check for functions that have known

vulnerabilities, e.g., strcpy(), strcat()

– also limited support for arguments (e.g., variable, static string)

– only suitable as first basic check

– cannot understand more complex relationships

– no control flow or data flow analysis

– Examples

• flawfinder

• RATS (rough auditing tool for security)

• ITS4

Secure Software Programming 17

Automation Systems Group

Static Security Testing

• Annotation-based systems

– programmer uses annotations to specify properties in the source

code (e.g., this value must not be NULL)

– analysis tool checks source code to find possible violations

– control flow and data flow analysis is performed

– problems are undecidable in general, therefore

trade-off between correctness and completeness

– Examples

• SPlint

• Eau-claire

• UNO (uninitialized vars, null-ptr dereferencing, out-of-bounds access)

Secure Software Programming 18

Automation Systems Group

Static Security Testing

• Model-checking

– programmer specifies security properties that have to hold

– models realized as state machines

– statements in the program result in state transitions

– certain states are considered insecure

– usually, control flow and data flow analysis is performed

– example properties

• drop privileges properly

• race conditions

• creating a secure chroot jail

– examples

• MOPS (an infrastructure for examining security properties of software)

Secure Software Programming 19

Automation Systems Group

Static Security Testing

• Meta-compilation

– programmer adds simple system-specific compiler extensions

– these extensions check (or optimize) the code

– flow-sensitive, inter-procedural analysis

– not sound, but can detect many bugs

– no annotations needed

– example extensions

• system calls must check user pointers for validity before using them

• disabled interrupts must be re-enabled

• to avoid deadlock, do not call a blocking function with interrupts disabled

– examples

• Dawson Engler (Stanford)

Secure Software Programming 20

Automation Systems Group

Static Security Testing

• Model-checking versus Meta-compilation (Engler ‘03)

• General perception

– static analysis: easy to apply but shallow bugs

– model checking: harder, but strictly better once done

• ccNUMA with cache coherence protocols in software

– 1 bug deadlocks entire machine

– code with many ad hoc correctness rules

• WAIT_FOR_DB_FULL must precede MISCBUS_READ_DB

– but they have a clear mapping to source code

– easy to check with compiler

Secure Software Programming 21

Automation Systems Group

Static Security Testing

• Meta-compilation

– scales

– relatively precise

– statically found 34 bugs, although code tested for 5 years

– however, many deeper properties are missed

• Deeper properties

– nodes never overflow their network queues

– sharing list empty for dirty lines

– nodes do not send messages to themselves

• Perfect application for model checking

– bugs depend on intricate series of low-probability events

– self-contained system that generates its own events

Secure Software Programming 22

Automation Systems Group

Static Security Testing

• The (known) problem

– writing model is hard

– someone did it for a similar protocol than ccNUMA

• several months effort

• no bugs

– use correspondence to auto-extract model from code

• Result

– 8 errors

– two deep errors, but 6 bugs found with static analysis as well.

• Myth: model checking will find more bugs

– in reality, 4x fewer

Secure Software Programming 23

Automation Systems Group

Static Security Testing

• Where meta-compilation is superior

Static analysis Model checking

 Compile ! Check Run ! Check

Don’t understand? So what. Problem.
Can’t run? So what. Can’t play.
Coverage? All paths! All paths! Executed paths.

First question: “How big is code?” “What does it do?”
Time: Hours. Weeks.

Bug counts 100-1000s 0-10s
Big code: 10MLOC 10K

No results? Surprised. Less surprised.

Secure Software Programming 24

Automation Systems Group

Static Security Testing

• Where model-checking is superior

• Subtle errors

– run code, so can check its implications

– data invariants, feedback properties, global properties

– static better at checking properties in code

– model checking better at checking properties implied by code

• End-to-end

– catch bug no matter how it is generated

– static detects ways to cause error

– model checking checks for the error itself

Secure Software Programming 25

Automation Systems Group

Dynamic Security Testing

• Run-time checking between operating system and program

– intercept and check system calls

• Run-time checking between libraries and program

– intercept and check library functions

– often used to detect memory problems

• interception of malloc() and free() calls

• emulation of heap behavior and code instrumentation

• purify, valgrind

– also support for buffer overflow detection

• libsafe

Secure Software Programming 26

Automation Systems Group

Dynamic Security Testing

• Profiling

– record the dynamic behavior of applications with respect to

interesting properties

• Obviously interesting to tune performance

– gprof

• But also useful for improving security

– sequences of system calls

– system call arguments

– same for function calls

Secure Software Programming 27

Automation Systems Group

Dynamic Security Testing

• Penetration testing

– explicitly trying to break applications security

– general tool support available

• nessus

• ISS Internet Scanner

• nmap

– also tools for available that can test a particular protocol

• whisker

• ISS Database scanner

Secure Software Programming 28

Automation Systems Group

Summary

• Testing

– important part of regular software life-cycle

– but also important to ensure a certain security standard

• Important at design and implementation level

– design

• attack graphs, formal methods, manual reviews

– implementation

• static and dynamic techniques

• Static techniques

– code review, syntax checks, model checking, meta-compilation

• Dynamic techniques

– system call and library function interposition, profiling

