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Abstract— Driving a mobile robot safely to target locations
is a vital task. Common approaches are dividing this task
in two parts, global and local path-planning. The goal of
the global planner is to find a feasible global path through
an environment based on previous obtained maps. The local
planner uses the current sensor readings and generates target
values for the motor controllers to steer the robot collision free
and consistent with the global plan. Most applied strategies
are sampling based - the control space gets sampled and the
resulting trajectories are geometrically tested for collisions.
Samples which are free of collision are further weighted using a
cost functions which is computational expensive. The proposed
method uses search strategies based on Meta-Heuristics to
reduce the expensive evaluation tests. This enables the local
path-planning to run with a higher update rate and to react
faster to changes in the environment, which allows the robot
to drive faster and safer. Results are obtained by a reference
implementation based on state of the art methods used within
the Robot Operating System (ROS) navigation stack and show
a significant performance boost.

I. INTRODUCTION

Navigation and planning are essential for mobile robots to
act in out- and indoor environments. Uncountable articles are
describing approaches and applied solutions of autonomous
system driving safely in different domains, e.g. Stanley [17]
a self driving car that won the DARPA Grand Challenge by
driving 132 miles through the Mojave desert, or the mobile
robots of Kiva Systems [7] handling goods in distribution
centers and warehouses like Amazon. Articles like [17]
and [7] present the relationship between the environmental
complexity and the computational on-board power needed to
deal with it. Stanley has a six processor computing platform
sponsored by Intel whilst Kiva robots are using low cost
DSP’s for navigation and vision processing1 to drive within a
known environment. The robot shown in Figure 1 is used on
our institute. The robot is able to drive autonomous within
our lab/office environment and is equipped with one Intel
processor (i5@3,4GHz) running Robotic Operation System
(ROS)2. While the application domain and computational
power varies strongly between the robotic systems, all of
them have to move safely and efficient from one location to
another.
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1Kiva Systems Uses "Smart" Blackfin-powered Robots for Ware-
house Navigation | Analog Devices: http://www.analog.com/en/
content/kiva_systems_bf548/fca.html

2Robot Operating System (ROS): http://ww.ros.org/
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Fig. 1: This figure shows a Pionner3DX and its view of the
office environment while passing through a door. The blue
line shows the global path and the green line the selected
trajectory of the local planner.

A common strategy to deal with the complex planning
problem is the division into a global and a local planning
problem [12]. Global path-planning requires a simplified
representation, e.g. static map, of the search problem to
efficiently compute an optimal shortest path using variants
of Dijkstra’s [2] or A∗ [9] algorithm, ignoring kinematic
and acceleration constraints of the robot. In succession the
retrieved global path is used by a local planner for guiding
the robot through the environment. The local planner takes
sensor readings of the robot into account and is reactive
to changes within the sensor range. It chooses the best
values of available motor controls in respect to the kinematic
and dynamic constraints of the robot. The main task is to
avoid collision with obstacles, by generating feasible velocity
commands to produce a trajectory for the robot near the
global path. The heuristic strategy presented optimizes the
local planner.

One of the most popular local planer and reactive colli-
sion avoidance method is the Dynamic Window Approach
(DWA)[4]. Its based on evaluating a fixed number of tra-
jectory samples in a reduced velocity space. A dynamic
window around the current robot fused with the current
sensor readings of the robot represents a so called costmap.
Trajectories are sampled into that costmap and weighted by a
cost function. Recent adoptions of this method can be found
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in [15][14]
In this paper we propose a method which finds the best

velocity commands by using search strategies based on Meta-
Heuristics instead of evaluating a fixed number of trajectories
in a brute force manner. A combination of Iterated Local
Search (ILS) with different neighborhood structures, Variable
Neighborhood Search (VNS), and a Tabu list provides a
significant documented performance boost.

This enables the local planer to:
• run at a higher frequency
• simulate trajectories for a longer time interval
• moving the robot at higher speed
• investigate a larger amount of trajectories
• use a higher costmap resolution
The next section presents related work, followed by a

detailed description of the approach in Section III, and results
of the experiments are given in Section IV.

II. RELATED WORK

Of particular interest are local planning methods which
apply sampling and simulation of trajectories. Here the
maximization step can easily be substituted by the proposed
method. The next two section describe the recent develop-
ments of this family of planners and gives an introduction
to the used Meta-Heuristic algorithms.

A. Local Planning and Obstacle Avoidance

A well known method for local planning is the Dynamic
Window Approach proposed in [4]. The method discretely
samples the velocity space (v, w) of the robot, where v is
the linear velocity and w the angular velocity of the robot,
to create a set of feasible trajectories. The velocity space
is reduced to the reachable minimal and maximal velocity
in one control cycle, taken the acceleration limits of the
robot into account. For a fixed amount of velocity samples
the corresponding trajectories are created using a predefined
granularity by performing forward simulation for a short
period of time, starting at the current position of the robot.
Evaluating all trajectories with respect to a weighted cost
function (cf. Equation 1) identifies the best trajectory.

fc(v, w) = αfa(v, w) + βfd(v, w) + γfv(v, w) (1)

The function fa(v, w) judges the angle between the robots
heading and a given goal position. It is maximal if the
heading is a straight line to the goal. The distance to the
closest obstacle is calculated in the function fd(v, w). The
function fv(v, w) takes the forward velocity into account and
rewards faster movements of the robot. This method does
not use a global plan to guide the robot, so without further
changes it is subject to get captured in local minima.

Other applications of this approach in recent planning
systems, adapt the corresponding cost function. The excel-
lent move_base3 motion-planning framework introduced

3move_base planning framework: http://wiki.ros.org/move_
base

in [14] implements within the navigation stack of Robot
Operating System (ROS) local planner which incorporate
global plans.

One implementation is based on DWA. There is also
the option to use Trajectory rollout [5] as a local planner
which is very related to the DWA, but in contrast improves
in simulating the robots trajectory by accurately applying
acceleration limits over the whole simulation time. The
cost function maximizes characteristics like proximity to
obstacles, proximity to the goal, proximity to the global path,
and speed. Furthermore a number of escaping strategies try
to avoid the vulnerability to local minima.

Collision detection and cost calculation is performed by
using the footprint of the robot following the calculated
trajectory. Hence the discretized footprint, which is usually
given as a simple polygon, is projected on the costmap.
Bresenham’s Line algorithm [1] is used for ray-tracing the
contour of a robot in the discrete workspace. Figure 2a
shows the global view of the planning task. In Figure 2b the
corresponding local view is depicted, including all sampled
trajectories which are evaluated using a local costmap.
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(b) Trajectory generation for linear, and angular velocities
(v, w) in local costmap guided by global path.
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Concerning the optimization of the used cost functions the
most common approach for DWA and related local planner
is to evaluate all possible trajectories in a reduced discrete
velocity space. Examples of this approach can be found in
[11][14][15].

The Curvature Velocity Method in [16] considers approx-
imation techniques like simulated annealing to maximize the
cost function using the whole velocity space, but abandoned
the idea due to still high computational costs. Instead of
using discrete samples of the velocity space, it divides the
space in sets of curvature intervals. Evaluation is performed
by evaluating over all curvature intervals.

The proposed method extends the DWA approach, by
using approximation algorithm to maximize the cost function
in a discrete representation of the velocity space.

B. Meta-Heuristic Search

The family of algorithms using Meta-Heuristics is ex-
tremely successful in solving combinatorial problems (e.g.
Traveling Salesman problem, MAX-Sat problem, scheduling
problems). These algorithms build on the idea of executing
multiple searches to find local optimal solutions in different
parts of the search space using randomization, which together
yield a global approximate optimal solution.

The basic Local Search (LS) (cf. Algorithm 1) finds a
local optimum according to a cost function cost(x) and a
fixed sized region around an initial solution in the solution
space. The set of solutions in this region is denoted as the
neighborhood of x. The necessary steps to get from the initial
solution to a solution in the neighborhood is called a move.

Algorithm 1 Local Search (LS)

x← initial solution
repeat

select a x′ ∈ NEIGHBORHOOD(x)
if cost(x′) ≤ cost(x) then

x← x′

end if
until stopping criteria satisfied

A nice survey of Iterative Local Search including the basic
algorithm (cf. Algorithm 2) can be found in [13]. The main
idea is to call a local search procedure iteratively, until a
certain stopping criteria is satisfied. In each iteration the
current solution might be perturbed by changing parts of
the solution. The following local search takes this altered
solution as a starting point and returns a new solution. If it
satisfies an acceptance condition (e.g. the best solution so
far), the process restarts with the new solution. In addition,
a history of already found solutions may be used to steer
perturbation and the acceptance test.

Instead of using a fixed neighborhood, the Basic Variable
Neighborhood Search (cf. Algorithm 3) as presented in [8]
uses a neighborhood structure of possibly nested neigh-
borhoods Nk(x) = N1(x), N2(x), . . . , Nkmax

(x) which to-
gether are guaranteed to explore the whole solution space. In

Algorithm 2 Iterative Local Search (ILS)

x0 ← initial solution
x∗ ← LOCALSEARCH(x0)
repeat

x′ ← PERTURBATION(x∗,history)
x∗′ ← LOCALSEARCH(x′)
x∗ ← ACCEPTANCECRITERION(x∗,x∗′,history)

until stopping criteria satisfied

the shaking phase the algorithm chooses a random solution
of the current neighborhood to avoid getting captured in
local minima. If the solution found by the Local Search does
not improve the next neighborhood will be considered (cf.
Algorithm 4).

Algorithm 3 Variable Neighborhood Search (VNS)

function VNS(x, kmax)
repeat

k ← 1
repeat

x′ ← SHAKE(x, k)
x′′ ← LOCALSEARCH(x′)
NEIGHBORHOODCHANGE(x, x′′, k)

until k = kmax

until stopping criteria satisfied
end function

Algorithm 4 Neighborhood Change

function NEIGHBORHOODCHANGE(x, x′, k)
if cost(x′) < cost(x) then

x← x′

k ← 1
else

k ← k + 1
end if

end function

Another successful Meta-Heuristic strategy is Tabu Search
(cf. Algorithm 5) proposed in [6]. To avoid local minima a
Tabu list keeps track of moves which are not allowed during
the exploration of the current neighborhood. In its simplest
form the Tabu list includes all visited solutions. This might
be too restrictive, or the list might grow too large, hence
one can restrict the list to a certain length, and delete e.g.
the oldest item in the list in each iteration. One advantage
of this method is, that it can be easily combined with other
Meta-Heuristic algorithms.

III. APPROACH

The aforementioned trajectory selection for forward move-
ments, evaluation and collision test are costly operations. The
focus lies on improving this part of the DWA algorithm.
The trajectory sampling and selection of the DWA are
implemented in python minimizing a simpler cost function



Algorithm 5 Tabu Search

Tabulist← 0
x← initial solution
repeat

X ′ ← NEIGHBORHOOD(x) 6∈ Tabulist
x′ ← best solution in X ′

Tabulist = Tabulist ∪ {x′}
x← x′

if x is overall best solution then
store x as best solution

end if
until stopping criteria satisfied

fc(v, w) (cf. Equation 2), where fg(v, w) is the distance of
the center of the robot in the end position to a predefined
goal position, and fo(v, w) is the maximal distance to an
obstacle on the trajectory path.

fc(v, w) = αfg(v, w)− βfo(v, w) (2)

Instead of performing an exhaustive Brute Force search
on all velocity samples, Meta-Heuristic algorithms are here
used to boost the search performance.

The reduced search space are all tuples of forward and an-
gular velocities (v, w) within given limits vmin ≥ v ≤ vmax

and wmin ≥ w ≤ wmax and a step size for discretization by
fixing the number of samples.

A. Neighborhood and Local Search (LS)

The neighborhood of a solution is simply defined by
making a number of discretization steps to reachable regions
from the current solution velocity tuple. The 4-neighborhood
makes a step by either increasing or decreasing the current
linear and angular velocity by one discretization step (Man-
hattan distance = 1). The 8-neighborhood takes all neighbors
into account which are reachable in one discretization step
(Moore neighborhood). 16-neighborhood are all neighbors
reachable in two steps. This process continues until the whole
search space is the neighborhood.

Using Local Search the neighborhood is either exhaus-
tively searched for the best solution (Best-Improvement
heuristic) or stopped after finding the first improving solution
(First-Improvement heuristic).

B. Tabu List

Instead of recording all steps made in a Local Search
run, all visited states are marked as tabu and will not be
considered as valid solution in future steps of the algorithm.
The Tabu list is used by the other Meta-Heuristic algorithms
during the Local Search.

C. Iterated Local Search (ILS)

The perturbation step is very simplified and just finds
the next random valid velocity tuple. Instead of altering the
current solution in each step, we make use of the history
and apply it after a fixed amount of iterations. The algorithm

can use a 4,8, and 16-neighborhood with Best Improvement
heuristic for the Local Search.

D. Variable Neighborhood Search (VNS)

For the VNS algorithm local search is performed in one
neighborhood until no improvement occurs. The shaking
chooses a random solution in the current neighborhood.
If the shaking does not yield any solution, because the
whole neighborhood is tabu, or does not include a colli-
sion free trajectory, the next neighborhood is chosen. An
ordering of neighborhoods according to their size yields
the neighborhood structure N0(x) = 4-connected, N1(x) =
8-neighborhood, . . . , Nk(x) = k-steps reachable neighbor-
hood. Larger neighborhoods are too costly to evaluate. There-
fore the neighborhood structure is bounded above by kmax =
8. If no improvement is made up to the Nkmax neighborhood,
a new initial solution is generated at random. The VNS
algorithm can be used with Best-, or First-Improvement
heuristic for the Local Search.

E. Experiments

To select a benchmark cost a brute force search is per-
formed on random generated test instances, evaluating a
fixed number of trajectories. The time the algorithm needs
to find this benchmark solution is used to compare their
performance.

All algorithms are tested using different minimal, and
maximal velocities to account for different acceleration lim-
its. The weighting coefficients of the cost function are fixed
to α = 0.01 and β = 1. The local goal is also at a fixed
location in the map. The step size of the collision test is
fixed to 0.015 meter. Forward simulation time is fixed to
one second.

The following 60 test instances include different obstacle
counts and random placement of quadratic obstacles:
• 15 instances with 1 obstacle and side length 1 meter.
• 15 instances with 3 obstacles and side length 1 meter.
• 15 instances with 5 obstacles and side length 0.5 meter.
• 15 instances with 25 obstacles and side length 0.1 meter.
Figure 3 illustrates three random instances. A generated

costmap together with a visualization of consecutive local
path planning steps in a simulation is shown in Figure 4.

(a) (b) (c)

Fig. 3: Figures (a)-(c) show 3 out of 60 random instances
for experiments. The instances differ in number and size of
obstacles and are used for local costmap creation.

The following list shows the tested algorithms:
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Fig. 4: This figure visualizes elements of the local path planer
in action over three iteration. The costmap (distances to
known obstacles) is shown in gray. Drive-able trajectories
are drawn in green, whereas red trajectories collide with
obstacles. In each local planning step possible trajectories are
weighted with respect to obstacle closeness and progression
towards goal destination. For example in the second step a
longer valid trajectory is rejected, while a shorter trajectory
which stays farther away from obstacles is selected for
execution. After three local planning applications the robot
safely reaches the goal destination.

• Random Search with Tabu List: A repeated random
guess of a velocity tuple (v, w) (RST).

• Iterated Local Search: Performing Iterated Local
Search with 4, 8 ,and 16 neighbors and Tabu List (ILS4,
ILS8, ILS16).

• Variable Neighborhood Search: Variable Neighbor-
hood search with Best-,and First-Improvement heuristic,
and Tabu List (VNSB, VNSF).

IV. TEST RESULTS

All tests were performed on a 2.4 GHz, Intel Core 2 Duo
processor using 4 GB RAM.

In the first experiment the algorithms were applied to
all 60 instances to evaluate a broad spectrum of possible
environments. Figure 5 illustrates the results using 240
trajectories, and using 2400 trajectory samples.

The results show that all algorithms, including RST,
outperform the Brute Force generate-and-test method signif-
icantly. As expected increasing the number of trajectories
greatly favors the Meta-Heuristic algorithms, since they
benefit from larger search spaces. Notice that ILS and VNS
algorithms differ apparently from the RST by exhibiting
much smaller variance in their test results, indicating that
randomization alone is not enough to achieve very good and
stable performance. Furthermore the VNS exhibit a more
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VNSB
Random
Brute Force

ILS8
ILS16

Fig. 5: This figure shows the results of testing all 60
randomly generated instances. The top figure shows the run
time performance for 240 trajectories, and the bottom figure
for 2400 trajectories. Compared to brute force search, the
Meta-Heuristic algorithms show a significant improvement.

stable performance than the ILS methods. Comparing the ILS
algorithms reveals the connection of the search space size to
the size of the neighborhood. A small number of trajectories
benefits smaller sized neighborhoods, whereas increasing the
number of trajectories benefits larger neighborhoods.

The following tests only include the VNSF, VNSB and
ILS4 algorithms. The algorithms are executed with specific
world instances, and repeated 50 times. The results in
Figure 6 show again that the VNS algorithms significantly
outperform the Brute Force method.

Analyzing the results of the ILS4 algorithm shows that
a too small environment will quickly degrade to random
search. Here the use of a neighborhood structure pays off
and the VNS approaches perform evidently better than ILS.
In addition, the results show that the algorithms perform good
independent of number and size of obstacles.

As for nearly all optimization problems, the No Free
Lunch theorems [18] apply to the local planning domain.
Looking at all the results, there is no clear winner among
the algorithms. Nevertheless using Variable Neighborhood
search with Tabu List and Best Improvement heuristic seem
to yields the best and most stable overall performance.

In general the run time of the python implementation is
not very efficient compared to tuned C++ implementations.
Therefore the absolute numbers of the run time evaluations
should be handled with care.

V. CONCLUSIONS

Applying Meta-Heuristic search to trajectory selection of
local planners like DWA is a first step in using the power
of these search procedures in the context of local planning.
The results of our experiments in Section IV show, that
already the small selection using Iterated Local Search,
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Fig. 6: The results of 50 consecutively executions with (a)
240 and (b) 960 trajectories, on particular instances which
differ in number and size of obstacles. The blue line marks
the run time for brute force search, which is used as a
benchmark.

and Variable Neighborhood Search provide significant per-
formance improvement. Therefore it would be of interest
to investigate related algorithms like GRASP [3], reduced
VNS, or Simulated Annealing [10]. In addition, developing
more sophisticated neighborhood structures, and extending
the tabu search method would also be valuable.

The proposed method is also applicable for robot mod-
els of higher degree of freedom, since dealing with large
trajectory samples is a particular strength of Meta-Heuristic
search.

The applicability to similar path-planning methods using
trajectory samples, like Curvature Velocity Method [16], or
the Trajectory Rollout method implemented in move_base,
are also subject of further investigations.

One of the next goals is to integrate this trajectory selec-
tion in existing planning systems for robots using ROS and
analyze the performance of the algorithms using state of the
art methods for costmap calculations and collision testing.
With the gained data a fine tuned local planner using Meta-
Heuristic based search methods can be tested under real and
simulated environments.
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