
Free Development Tools
for

BCU 1 and BCU 2

Martin Kögler
e9925248@stud4.tuwien.ac.at

http://www.auto.tuwien.ac.at/~mkoegler/



Goal

● Create a set of DFSG free tools to 
program and configure BCUs for Linux 
(without ETS)

● No ETS interface
● no specification available

● No GUI / IDE
● use of standard C IDEs (KDevelop, Emacs,..)
● build with makefiles



Parts

● generic assembler/linker for m68hc05
● C-compiler for m68hc05
● libraries / headerfiles for BCU OS
● helper utilties for image building
● download / configuration utilities



Assembler/Linker

● complete GNU binutils (CVS Version) 
ported to m68hc05

● relaxing supported
● special features

– generation of unique section names

– sections can be moved, if a memory region 
is full

● already done



Debugger/Simulator

● base on GNU gdb
● initially ported for regression test
● simulates only CPU core
● limited backtrace funtionality
● possible future extension:

– create fake BCU OS to debug BCU 
applications



GNU GCC

● GCC ported to m68hc05 architecture
– missing function in the CPU

● => emulation of some operations
● arbitrary memory access
● data stack
● general purpose registers
● mul, div, floating point

● => some expensive operations left out
● eg. setjmp/longjmp

– small memory (BCU1: 256 ROM, 18 Byte 
RAM) limites really useable features



Programming Model
– hardware call stack

● BCU2 limits to about 4 levels for the user

– data stack
● max. 256 bytes
● use one bytes ram as stack pointer

– register
● use 13 bytes ram (RegB-RegN) as GPR

– memory access
● only 8 Bit index register
● => read / write / call subroutine
● needs 5 Bytes ram



Internals

● Uses two RTL representations
– high level

● use only GPRs
● works on pseudo instruction with 16 / 32 Bit 

operands

– low level
● splitted into target operations (after register 

allocation)
● each instruction has a corresponding real 

instruction or emulation routine
● some optimizations are redone



Status GCC

● based on development branch gcc 4.0
● is complete and correct
● plattform specific optimization missing
● G++ frontend is partically working

– eg. no exceptions



EIB Daemon (1/2)

● tool to communicate with EIB bus
● supports different low level interfaces

– FT1.2 (user mode)

– EIBnet/IP routing (user mode)

– TPUART (kernel driver)

– PEI 16 (kernel driver)

– experimental
● TPUART user mode interface
● PEI 16 user mode interface (not really working)



EIB Daemon (2/2)

● Provides Layer 4 access over TCP/IP 
or Unix Sockets

● supports Busmonitor mode
● vBusmonitor

– best effort, cooperative busmonitor mode

● implements Layer 7 and management 
functions

● simple C Interface for clients
● each management program about 30 lines



Header Files / Libraries / 
Helper Utilities

● A prototype for a subset of BCU1 
functionality exists

● needs to be rewritten
● features of BCU2 needs to be included
● support for parameter missing
● image patching support
● ...



Questions?

http://www.auto.tuwien.ac.at/~mkoegler/


