Programming fieldbus nodes: A RAD approach to customizable applications

G. Neugschwandtner, W. Kastner and M. Kogler
Automation Systems Group, Institute of Automation, TU Wien
{gn,k,mkoegler} @auto.tuwien.ac.at

Abstract

The European Installation Bus (EIB), part of the KNX
standard, is a field bus for home and building automation.
Bus Coupling Units (BCUs) provide a generic platform
for embedded nodes based on the M6SHCO05 microcon-
troller family. A set of open source tools for developing
and downloading BCU programs based on the GNU tool
chain is presented. It uses a RAD-like (Rapid Application
Development) approach. The tool set also supports sep-
arating application development and deployment and in-
cludes a multi-user and network-capable daemon for EIB
access and network management. Issues in porting the
GNU C compiler to the target platform are highlighted.

1. Introduction

The European Installation Bus EIB [4] is a home and
building automation bus system. It is optimized for low-
speed control applications like lighting and blinds con-
trol. EIB forms a part of the KNX specifications [6].
BCUs (Bus Coupling Units) are standardized, generic
platforms for embedded EIB devices. They include the
entire physical layer network interface, the link power
supply and a microcontroller holding an implementation
of the EIB/KNX protocol stack in ROM. The microcon-
troller is a member of the Freescale/Motorola M68HCO0S5
family. Currently, two major variants, referred to as
BCU 1 and BCU 2, exist. Their key differences lie in the
system software implementation and the amount of avail-
able memory. BCUs are customized for a specific task
(e.g., a wall switch) by combining them with application
modules containing the necessary hardware. The appro-
priate software is stored in the microcontroller EEPROM.

Having to write all this software from scratch would
prohibitively increase the effort involved in building an
EIB/KNX system. Therefore, manufacturers provide
ready-made applications which are downloaded during
the configuration phase. The project engineer can further
customize the behaviour of the node by modifying man-
ufacturer defined application parameters. The BCU ap-
plications are distributed in a format which includes the
necessary meta information to allow an integration tool
to display the parameters. Moreover, it provides the tool
with the necessary knowledge how to apply these changes

0-7803-9402-X/05/$20.00 © 2005 IEEE

to the program code.

For setting up the communication relationships be-
tween nodes, the project engineer has to define bindings
between communication endpoints. In EIB/KNX sys-
tems, the communication endpoints relevant for process
data exchange are referred to as group objects. The project
engineer combines several of them into a network-wide
shared variable by assigning them to a common logical
group. This binding information is also stored in the BCU
EEPROM and downloaded by the integration tool. There-
fore, the meta information also has to cover the group ob-
jects of a BCU application.

For EIB/KNX systems, only one single integration tool
is necessary to handle every certified device (and applica-
tion) — no matter from which manufacturer. This approach
significantly eases the setup of multi vendor systems. The
tool, called ETS, will not accept any device application
which has not passed compliance certification.

The BCU system software provides applications with
an appropriate API for handling data exchange over group
objects (and other helpful functions). Yet, with the SDKs
presently available an application developer still has to
use low-level constructs, e.g., manipulate configuration
data or call subroutines at specific memory locations. The
project presented instead adopts a RAD like programming
model, which we believe to be a novel approach for field
devices.

This model encapsulates the system software entities in
a way which is inspired by the object-oriented paradigm.
It allows defining the functionality of a BCU program in
a far more structured and transparent way. Besides lev-
elling the learning curve, this can also be expected to re-
duce the probability of programming errors. In addition,
the customization of applications by a project engineer is
supported. This concerns both the generation of the nec-
essary meta information as well as applying the selected
configuration to the BCU applications.

2. Key Features

A complete set of development tools for both BCU 1
and BCU 2 - in the following referred to as BCU SDK —
has been developed. Currently, it only supports the ver-
sions for the EIB/KNX twisted-pair medium. The code
generation tools are based on the GNU tool chain [2]. The
RAD programming model is implemented by preprocess-

ing the input files to yield plain C code. The separation of
development and deployment, as outlined above, is sup-
ported via an integration tool interface. To allow the use
of custom integration tools, a new exchange format was
defined which also allows better description of the appli-
cation behaviour. A Unix daemon encapsulates the dif-
ferences of a variety of hardware interfaces for EIB/KNX
access. Besides supporting the download of BCU applica-
tions, it also autonomously executes network management
procedures. Its protocol is open for use by other programs.

2.1. Programming model

For interacting with the BCU system software, the
BCU SDK offers an increased level of abstraction. The
programmer uses a simple specification language to de-
fine which system entities he would like to use and how he
would like to refer to them in his C code. The specification
file is plain text. Its syntax is inspired by modern RAD en-
vironments, where objects are instantiated from a range of
available classes and customized by changing properties
and assigning event handlers. Setting up a group object
for use as a network variable is accomplished as follows:

GroupObiject {
Title "Input";
Type UINTI;

Name Recv;
on_update Do_io;
}i

This declaration makes a global variable Recv avail-
able which will always contain the current value of the
network variable. It is of the type “EIB/KNX 1 bit” (this is
mapped to an unsigned 8 bit integer in the C code). When-
ever its value changes, the function Do_io () is called.
This handler has to be provided by the programmer.

The value of this network variable will be updated
whenever another node transmits a value modification re-
quest to a group address which is associated with this
group object. The selection of these group addresses is
defined separately to allow customization, as will be dis-
cussed below. Application parameters are handled in a
very similar fashion. All relevant BCU system function-
ality is accessible this way. This also includes timers, ini-
tialization and power-failure handlers and the EIB/KNX
client-server communication scheme for node manage-
ment (referred to as interface objects and properties). All
differences between the BCU 1 and BCU 2 low-level APIs
are hidden by the SDK. Additionally, C wrappers for the
low-level API calls are provided.

Signed and unsigned integer types are available in any
byte width from 1 to 8 to optimize RAM usage. As a spe-
cial feature, transparent EEPROM access is conveniently
possible by declaring a variable with the appropriate stor-
age class and attribute, such as
int x EEPROM_SECTION EEPROM_ATTRIB;.

Besides describing the system entities to be used, the
specification file is also used to declare meta information.
As an example, the Title of a GroupObject will consti-
tute its textual reference in the integration tool. However
— in contrast to ETS — the meta information includes be-
havioural description.

‘ RAD specification ‘ D C files ‘

C Development build script)

meta data # program text

‘ Application information ‘
planning

parameter selection

binding
‘ Configuration description ‘

% \d

(Deployment build script)

Figure 1. BCU SDK data flow

Integration
tool

The functionality of the application is described by
declaring one or more functional blocks, which define a
processing rule over a set of interfaces. These interfaces
can be group objects, parameters or interface object prop-
erties. Every block contains an (external) reference to the
precise definition of its behaviour.

2.2. Data flow

To allow customization by the project engineer, the
input files provided by the programmer are not directly
transformed into a BCU memory image which is ready
for download. Instead, they take a number of intermedi-
ate steps, which are illustrated in Fig. 1. First, they are
processed to yield the distribution format. This step is un-
der the control of the software developer. In the current
implementation, it is controlled by the development build
script. Actually, two separate distribution data formats ex-
ist for meta data and program text.

The meta data format is XML based and referred to
as application information. An XML Schema definition
is provided. The application information describes global
aspects like the type of BCU and application module the
program is designed for, its functional blocks, group ob-
jects, interface objects and properties, and parameters.

Application information data covering all devices
available for a project are imported into the integration
tool. Based upon these descriptions, the project engineer
selects appropriate applications and parameter values, and
assigns binding information. For every device used, the
integration tool creates a configuration description con-
taining these data (e.g., the group addresses to be bound
to a GroupObject). This format is again XML based.
The configuration descriptions are passed back to the de-
ployment part of the SDK, which applies the necessary
changes to the program text and generates a downloadable

image. This step happens under the control of the project
engineer. In the current implementation, it is controlled
by the deployment build script.

An important point is that the XML format hides how
an image is finalized and by which means this is done. The
format of the program text thus becomes an internal mat-
ter of the BCU SDK. It is entirely opaque to the integra-
tion tool. The application information contains a reference
attribute which uniquely specifies the matching program
text. How this text gets from the developer/manufacturer
to the project engineer (i.e., deployment build script) is
left open. The integration tool may for example store it
together with the meta data in a local database, or it may
be retrieved from the Web by the SDK deployment part.
Since this reference uniquely identifies the program text, it
is even possible to store the (appropriately encoded) pro-
gram text in its place, which is actually the path chosen by
the current implementation.

In the BCU SDK, the program text is not a binary im-
age. Instead, it contains the preprocessed C code and map-
ping information between its identifiers and the ones used
in the application information in encoded form. The pro-
grams are compiled by the deployment part after all con-
figuration settings are known to reduce image size. This
is in contrast to the ETS, which operates on binary images
and thus only supports relatively minor modifications in
response to a parameter change.

The exchange format is open to other hardware ar-
chitectures. Although it has been fully defined, no full-
fledged integration tool is available yet. Therefore, the
BCU SDK contains a minimal implementation which
transforms an application information into a configuration
description skeleton using an XSLT transformation.

2.3. Network access and management

To access the EIB bus, the BCU SDK uses a Unix
daemon (called eibd, Fig. 2). Multiple clients can con-
nect simultaneously via IP or Unix domain sockets. The
relevant parts of the EIB protocol stack to send and re-
ceive unicast, multicast and broadcast telegrams are pro-
vided. Also, eibd handles the protocol state machine for
the client endpoint of a reliable connection. Based upon
this, eibd can also autonomously execute various device
and network management procedures, such as setting of
node addresses. Also, a bus monitor can be opened, which
optionally can decode EIB frames.

The method of access to the EIB/KNX network is en-
tirely hidden by the backends. The backends for the
BCU 1, BCU 2 and the TP-UART IC communicate over
a serial link, making use of a selection of the low-level
drivers described in [5]. The TP-UART is a lean interface
IC which only implements medium access control instead
of the entire EIB/KNX protocol stack as BCUs do. EIB-
net/IP provides tunneling of EIB frames over IP networks.

Higher-level tasks within eibd register with the frame
dispatcher and state which frames (based upon addressing
mode and destination address) they are prepared to pro-

‘ Socket server ‘

‘ Client connection manager ‘

‘ Management Broadcast

and
connection oriented/-less unicast

Multicast

=
Q
=
c
o
1S
1)
S
m

‘ Frame dispatcher ‘

‘ BCU1 ‘ ‘ BCU2 ‘ ‘ TP-UART ‘ ‘EIBnet/IP‘

Figure 2. Bus access/management daemon

cess. To be able to serve multiple clients simultaneously,
backends should deliver as many incoming frames as pos-
sible and leave filtering to the frame dispatcher.

In principle, this allows one client to maintain a point-
to-point connection — where only frames from one single
source are relevant — and another to operate in bus monitor
mode. Yet, since bus monitor operation entails switching
the hardware into a read-only mode, a special “best-effort”
monitor mode was introduced which forwards all frames
the backend will provide in normal operation mode.

3. GNU tool chain port

For the BCU SDK a C compiler, assembler and linker
were needed. As there was no free tool chain available,
a new one needed to be created. However, writing a
complete C parser with type checking would have meant
duplicating work already done in various other places.
Therefore, it was decided to port an existing C compiler to
the M68HCOS5 architecture. GCC (GNU Compiler Collec-
tion) was selected for its proven front end and optimizer.
GCC s in wide-spread use as it is the standard compiler on
most free operating systems. Its core parts are maintained
by a large community. GCC typically uses the GNU binu-
tils as assembler and linker, which were ported too.

Since finding all errors in GCC only by reviewing its
output is not a feasible task, a CPU core simulator for the
M68HCOS5 architecture was developed. It is based on its
counterpart in the M68HC11 port of the GNU tool chain
[1]. Only aspects necessary for the regression tests are
simulated (e.g., neither the interrupt subsystem nor I/O
are implemented). The DejaGnu regression testing frame-
work was adapted to be able to run the standard GCC test
suites. A limited GNU debugger frontend is also provided.

The M68HCOS family processor core follows a von
Neumann architecture with a linear 16 bit address space.
The different memory types (RAM, ROM, EEPROM) are
mapped at different addresses. The M68HCOS5 variant
used in the BCU 2 has two separate RAM sections. For
read accesses, there is no difference for all memory types.
Write access to the EEPROM involves a certain control

sequence. The opcodes have a length of 1 byte with 0 to 2
bytes of address information. There are no alignment con-
straints for instructions or data. The constraints of a BCU
(< 1 kb EEPROM, « 100 bytes RAM) were used as the
design driver for the GCC port. It can however be used for
any member of the M6SHCO05 microcontroller family.

The M68HCOS5 family has only two hardware registers
(accumulator and index register). Its stack is a call stack
only and thus inaccessible to user programs. Besides, its
size is limited as the stack pointer is only 8 bits wide. Al-
though the address space is 16 bit, only an 8 bit index
register is available for register indirect addressing. Since
GCC is designed to work with a considerably different
hardware architecture, certain missing features need to be
emulated. 13 bytes of RAM are used to provide additional
general-purpose registers expected by GCC. They are lo-
cated in a region the BCU system routines reserve for tem-
porary use by the user application. Likewise, a data stack
is emulated. Multiplication, division and floating point
operations are handled by library functions.

GCC expects pointers which can cover the whole ad-
dress space. Since only an 8 bit index register is available,
store, load and call operations with 16 bit pointers are em-
ulated with self modifying code. Four bytes of RAM (plus
one to save data for the store operation) are reserved for
this purpose. On a pointer operation, the opcode of the
corresponding instruction with the appropriate addressing
mode is stored at the first byte, followed by the pointer ad-
dress and finally a return instruction. A call to this RAM
region starts the operation.

However, emulation cannot overcome all restrictions.
Especially the tight memory constraints of a BCU 1 (256
bytes EEPROM and 18 bytes RAM available to the user)
severely limit the available possibilities. Thus, expensive
operations like setjmp and longjmp are left out.

Transparent EEPROM access and support for 3, 5, 6,
and 7 byte integer types are accessible by using GCC at-
tributes. The semantics for transparent EEPROM access
is similar to the named address spaces of [3], but uses two
GCC attributes instead of one directive for each named
address space. Unlike [3], transparent access when deref-
erencing a pointer to an EEPROM location involves as-
signing a different attribute than for a plain variable. Solv-
ing this issue would require changes to the GCC frontend,
which we wanted yet to avoid for maintainability reasons.

Since the target architecture uses instruction formats
with different length, the necessary one is often unknown
at assembler runtime and the longest variant has to be
chosen. The linker will modify the code to use shorter
ones where possible (relaxation). To automatically dis-
tribute variables over the non-contiguous RAM sections
of a BCU 2, the linker is extended to be able to condition-
ally move sections between memory regions. GCC and
the assembler cooperate to assign each variable a section
of its own. For BCU 2 programs, all these sections are
initially assigned to one RAM area. If its size is exceeded,
the linker will move the necessary amount into the other.

4. Conclusion

A set of software development tools for EIB/KNX
nodes was presented. It supports a RAD like development
approach for both BCU variants, the customization of ap-
plications, and image download and network management
via a variety of bus interfaces. The SDK is fully func-
tional, although additional features are still being added
and require further testing. All parts are placed under the
GPL (GNU General Public License) and can be down-
loaded together with further documentation from [7].

The GCC port needed several tricks to make GCC cope
with the limitations of the target architecture. Also, the
expressiveness of the standard regression test suite is lim-
ited, as a number of test cases fail due to insufficient
memory and stack overflows. The compiler output will in
most cases be larger than well optimized, hand written as-
sembler code. For the exceptionally resource-constrained
BCU 1 environment, this considerably limits the amount
of functionality which can be realized. Still, it is possible
(although tedious) to let the SDK generate the application
skeleton only and use inline assembler. The C++ language
front end of GCC can be used to compile C programs with
the better type checking of C++, as long as features like
exceptions and RTTT are disabled. RAD-style BCU pro-
gramming is only possible in C, however. First evaluation
results have shown interesting effects due to the emula-
tion strategy necessary to use GCC with the target archi-
tecture. For example, the use of local instead of global
variables will result in larger code in some cases due to
the pronounced effect of the data stack emulation.

Besides further investigation of these effects, target
specific optimizations within GCC provide ample possi-
bilities for further work. Also, the handling of the build
process should be improved. The next steps will include
adding a graphical interface (e.g., using Eclipse or KDe-
velop) and the development of a basic, possibly template
driven integration tool.

References

[1] GNU development chain for 68HC11 & 68HC12. http:
//www.gnu.org/software/mé68hcll/.

[2] GNU tool chain documentation. Distributed with the re-
spective program sources, also available from http://
ftp.gnu.org/gnu/.

[3] ISO/IEC TR 18037:2004, Programming languages — C —
extensions to support embedded processors.

[4] W.Kastner and G. Neugschwandtner. EIB: European Instal-
lation Bus. In The Industrial Communication Technology
Handbook. CRC Press, 2005.

[5] W. Kastner and C. Troger. Interfacing with the EIB/KNX:
A RTLinux device driver for the TPUART. In 5th IFAC Intl.
Conf. on Fieldbus Syst. and Appl. (FeT’2003), 2003.

[6] Konnex Association. KNX Specifications, Ver. 1.1, 2004.

[7]1 TU Wien, Automation Systems Group. Home and build-
ing automation topics/projects. http://www.auto.
tuwien.ac.at/projects/hba/.

