
Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 1

Institute of Automation
Automation Systems Group

Vienna University of Technology
Vienna, Austria

www.auto.tuwien.ac.at/knx

Open-source foundations for PC based
KNX/EIB access and management

KNX Scientific Conference 2005

Bernhard Erb, Georg Neugschwandtner,
Wolfgang Kastner, Martin Kögler

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 2

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 2

Outline

• Workstation stacks for KNX/EIB

• eibd – KNX/EIB
connectivity daemon

• „KNX Live“ project

• Tweety – EIBnet/IP server

• Calimero – EIB/KNX Java APIs

• Outlook

For Linux, several low-level drivers for the serial PEI and TP-UART host protocols have
been provided. However, they do not present a unified interface to the client developer
intending to build a workstation application. The platform independent EIBnet/IP protocol
opens up new possibilities. Yet, appropriate hardware is still rare and another protocol
layer is placed between the developer and the desired result. Three software projects
are presented which address these shortcomings.

The first is a multi-user Unix daemon for KNX/EIB connectivity. The relevant parts of the
EIB protocol stack to send and receive unicast, multicast and broadcast telegrams are
provided. Also, the protocol state machine for the client endpoint of a reliable connection
is handled. Based upon this, the daemon can also autonomously execute various device
and network management procedures. Various methods for access are supported, yet
their differences entirely hidden from the client.

The second is a lean EIBnet/IP server for Linux systems. It is based upon the already
well-known PEI16 driver and is intended as an implementation of the minimum useful
EIBnet/IP protocol subset.

Third, a set of Java packages was created to jumpstart the development of platform-
independent EIBnet/IP Tunnelling clients. Encoding and decoding of interworking data
formats and a simple, XML based data point database are provided as well.

All this software is open source and available on a Live Linux CD. This CD is intended as
a try-out platform for both beginners and experts.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 3

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 3

Workstation stacks for KNX/EIB

• For visualization, configuration, development

• Methods for KNX/EIB network access
– EIA-232 interface

• PEI16 timing sensitive (due to RTS/CTS handshake)
→ tuwien.auto kernel driver

• PEI10 (FT1.2): only available on BCU2
• TP-UART based custom interface

– EIBnet/IP
• hardware independent
• cEMI message format covers all media

– USB

By its very purpose, most of the devices connected to a fieldbus are embedded nodes.
Yet, there are applications whose resource requirements make it necessary to connect a
general-purpose workstation (mostly a PC) to a network like KNX/EIB. This especially
concerns visualization, configuration, and development tasks.

While one lower part of the network stack will always have to be implemented using
special KNX/EIB hardware, a large part can rest on the PC. This provides benefits in
flexibility and performance. But where to make the cut?

PCs with EIA-232 ports can directly use the PEI16/EMI1 or PEI10/EMI2 interface
provided by the BCU (after level adjustment). While the timing constraints imposed by
the RTS/CTS handshake of PEI16 require special handling that in most cases will have to
be done by a kernel driver, the FT1.2 based protocol of the BCU2 (PEI 10) can be
implemented using the plain serial driver. Although not defined in the KNX handbook,
directly implementing the TP-UART host protocol offers the greatest flexibility, although it
is also not without timing challenges. For the Linux operating system, low-level (kernel
and user-mode) drivers for all these variants were published (tuwien.auto driver suite).

EIBnet/IP allows to communicate with an KNX/EIB installation by tunnelling over IP
networks. Data exchange uses the cEMI message format, which is attractive due to its
medium independent design. Beside older EMI formats, it is also used by USB interfaces
available.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 4

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 4

eibd – KNX/EIB connectivity daemon

• Focus: development and management

• Flexible, powerful

• Various bus access methods
– PEI16/EMI1, PEI10/EMI2
– TP-UART
– EIBnet/IP Tunnelling and Routing

• Dual client interface
– Proprietary open message protocol (sEMI)
– E IBnet/IP Tunnelling and Routing

• Multiple concurrent client connections
– Best-effort bus monitor

• Handles KNX/EIB device management procedures

Within the BCU SDK project (which is covered in “Rapid Application Development for
KNX/EIB BCUs”), a Unix daemon called eibd was created to cover access to the EIB/KNX
TP1 network for development and management purposes.

It supports a variety of bus access methods. These are implemented by “back ends”
which hide the differences behind a unified interface. While the PEI16/EMI1 relies on the
auto.tuwien kernel driver, PEI10/EMI2 needs no further software. The TP-UART host
protocol is implemented using kernel drivers as well as a using user mode code only.
EIBnet/IP Tunnelling and Routing are supported as well.

Clients are offered both a custom message protocol tailored to the needs of the BCU SDK
(sEMI – SDK EMI) as well as a limited EIBnet/IP server frontend. Clients can use sEMI to
invoke various services of the EIB/KNX protocol stack. This includes sending and
receiving unicast, multicast and broadcast telegrams. Also, eibd handles the protocol
state machine for the client endpoint of a reliable connection. Based upon this, eibd can
also autonomously execute various device and network management procedures, such
as assigning individual addresses. Also, a bus monitor can be opened, which optionally
can decode EIB frames. Several utility programs illustrating the use of this message
format are available.

A ``Raw'' interface is available for clients that wish to implement the server endpoint of a
reliable connection. This is necessary to enable the host eibd resides on to be managed
remotely via EIB/KNX management procedures. For the BCU SDK, eibd also acts as a
loader for downloading BCU applications over the network.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 5

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 5

eibd architecture

PEI10/EMI2
BCU2 TP-UART EIBnet/IPPEI16/EMI1

BCU1/2

Frame Dispatcher

sEMI via IP or Unix Domain Sockets

cEMI via EIBnet/IP Tunnelling/Routing

G
ro

up
 (C

L)

B
us

 M
on

ito
r

R
aw

(S
rv

.)Management Broadcast
and

connection oriented/-less unicast

The architecture of eibd allows multiple clients to connect simultaneously. Higher-level
tasks within eibd register with the frame dispatcher and state which frames (based upon
addressing mode and destination address) they are prepared to process. To be able to
serve multiple clients simultaneously, backends should deliver as many incoming frames
as possible and leave filtering to the frame dispatcher.

In principle, this allows one client to maintain a point-to-point connection - where only
frames from one single source are relevant - and another to operate in bus monitor
mode. Yet, since bus monitor operation entails switching the hardware into a read-only
mode, a special ``best-effort'' monitor mode was introduced which builds upon the fact
that telegram filtering is not performed in the access hardware, but in the frame
dispatcher. It forwards all frames the backend will provide in normal operation mode.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 6

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 6

“KNX Live” project

• Platform for exploring and understanding KNX/EIB
installations

• Easy to set up and use
– Controlled and safe environment

• Informative and illustrative
– Freely available
– Open source

• Focus
– Developers: attractive protocols, new approaches
– Technically inclined: base protocols, network access
– End users: process data access

The idea behind the “KNX Live” project is to offer a try-out platform for KNX/EIB
technology. The target audience ranges from developers who want to discover KNX/EIB
interfacing using Linux as well as people who are interested in the technology behind the
scenes of their home KNX/EIB system. It even encompasses beginners interested in what
benefits interfacing their PC with their KNX/EIB installation may bring.

Therefore, special attention was given to an easy and straightforward configuration. Even
KNX/EIB beginners should be able to use the system. Moreover, experiments should not
do any harm to either the PC or KNX installation. Therefore, this project was based on a
Knoppix live Linux CD, which offers a stable and safe environment. This operating
system is completely started from a single CD, without the need of hard disk installation.
To further the goal of knowledge distribution, all additional software packages are open-
source and freely available. The project also includes selected documentation regarding
KNX/EIB.

Especially when considering the beginner scenario described above, the focus clearly is
on process data access. Going one step further, (hobby) developers should be able to
exchange data with KNX/EIB devices with the minimum amount of detail knowledge
necessary.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 7

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 7

Knoppix Live Linux

/dev/eib
(kernel driver)

BCU

PEI 16

Client (OS independent)

EIBnet/IP Tunnelling Client

Runtime Interworking

Client application
Standalone / Web based

“KNX Live” architecture

Knoppix Persistent Home
on floppy, USB (flash) drive, HDD

partition (ext2/3, FAT32)
KNX/EIB System Metadata Handler

Minimal EIBnet/IP
Tunnelling server

UDP / IP UDP / IP

Embedded IP Router

Calimero
(programming language: Java)

Demo App.

Tweety
(programming language: C)

Therefore, a client-server architecture centred around EIBnet/IP tunnelling was chosen. It
allows the client to be written in an entirely platform independent manner, using Java. To
keep things even simpler for the client developer, an API was created which handles the
EIBnet/IP Tunnelling protocol. It is accompanied by one API for encoding and decoding
of Layer 7 group communication and another for maintaining a simple list of data points.
To illustrate how to make use of this API suite (“Calimero”), a demo application was
created. It can easily be replaced by something more complex at any point in the future.
EIBnet/IP also offers the perspective of remote access.

However, dedicated EIBnet/IP server hardware is still rare. For this reason, a minimal
Linux-based EIBnet/IP Tunnelling server (“Tweety”) was developed. It rests upon the
tuwien.auto PEI16 kernel driver. Due to the Knoppix environment, the user need not go
through the tricky compilation process. The configuration of the driver and server is
achieved by a installation “Wizard”. It first installs the driver, checks all serial interfaces
for attached BCUs, and starts the server when successful. The server has to set the
address table length of the interface BCU to zero to be able to participate properly in
group communication. Although it restores it to its previous value on termination, this
could be a problem when, e.g., the BCU of a light switch is used as a temporary interface
and Tweety is somehow prevented from restoring the table length (the PC is halted, or
the cable is disconnected prematurely). In this case, the BCU will no longer work with its
previous application module until the address table length is restored. The “Wizard”
script also addresses this issue.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 8

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 8

Tweety

• Minimal EIBnet/IP Tunnelling server
– Search and Description
– Tunnelling
– Lean and robust
– Tested with ETS (Falcon)

• Implementation
– Linux operating system
– PEI16/EMI1 to address existing installations
– Uses tuwien.auto kernel driver
– Written in C
– Multi-threaded (pthreads)

While eibd is designed to be powerful and flexible, which necessarily entails a certain
complexity, Tweety is focussed on a much smaller task. It is intended to cover a minimal
useful subset of the EIBnet/IP server protocol. In its current version, Tweety only
implements the Core and Tunnelling parts. Similar to eibd, the Device Management
service protocol was left out, since changing the port number or friendly name is easier
achieved on a PC-based implementation using command line parameters. Additional
options can be set via definitions in the Makefile.

Tweety builds upon PEI16/EMI1. This choice allows it to offer both BCU1 and BCU2
support with a single code base. EIBnet/IP clients connect to Tweety using UDP. Only
Tunnelling on Link Layer and one single user at a time are supported. Nevertheless
Tweety is a fully functional implementation, which has been successfully tested with ETS
(Falcon). These deliberate restrictions have lead to a small and robust architecture,
which is implemented in C with use of the pthreads library.

Tweety is divided into four concurrently executing entities. Since the PEI16 kernel driver
only allows a single process to connect, the receive and send units on the KNX/EIB TP1
side (receive EIB, send EIB) are executed as pthreads, whereas their UDP counterparts
(send UDP, receive UDP) are executed as processes. Interprocess communication is
handled via named pipes and a shared memory object, which is protected by a
semaphore. The shared memory holds information about the connected client and the
connection sequence numbers.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 9

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 9

/dev/eib

Tweety architecture

receive EIB

send EIB receive UDP

send UDP

UDP socket
Shared memory
(client address,

sequence number)

Tunnelling
Ack

received

Receive EIB: This thread listens to the device node (e.g., /dev/eib) , and blocks until a
new frame arrives. On reception the frame is passed to the pipe, and the thread returns
to the blocking state.

Send EIB: This thread waits until a new cEMI message is put into the pipe by the Receive
UDP process. After reading it, the cEMI message is converted into EMI1 format and
passed to the device driver. Tweety sends frames to the device driver in synchronous
mode. If the message cannot be dispatched after a fixed time, the server is halted.

Send UDP: This process waits until a new message is in the pipe. After reading it, it
performs the EMI1 to cEMI conversion and sends the frame to the EIBnet/IP client. If no
client is connected the frame is discarded. The client address and the sequence
numbers are taken from the shared memory. After sending the process waits for the
signal that the receive UDP process sends whenever it has received a Tunnelling
acknowledgement. After that, the send sequence number is incremented and the next
frame is processed. If no Tunnelling Ack message is received (and thus no signal
caught) within one second after transmission, the server tries to resend the frame. This
procedure is repeated only once; after the second timeout, the server closes the
connection.

Receive UDP: This process listens on the socket for incoming UDP messages. Every UDP
request is handled here, including Tunnelling Acks. If a Tunnelling request is received
the process places the message body into the pipe, and waits until the next request
arrives.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 10

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 10

Calimero Java APIs

• KNX/EIB data point abstraction (group
address, data point type, friendly name)

• Import/export point list as XML

• Runtime interworking
• ASDU/APDU translator for

group communication
• Enumerate available DPTs

• EIBnet/IP client code for
discovery and Tunnelling

• Search and description

• cEMI-based connections

• Relevant data structures
(incl. cEMI)

• Synchronous and
asynchronous send modes

tuwien.auto::
eibclient tuwien.auto::

eibpoints

tuwien.auto::
eibxlator

Calimero is a collection of Java APIs that together form a foundation for further EIB/KNX
high level applications (including remote access and control). Still, these APIs can be
used largely independently.

Eibclient is a EIBnet/IP client library that, in its current version, supports Tunnelling
connections as well as search and description. The aim of this API‘s is to allow the
establishment of EIBNet/IP connections with minimal effort. The entire EIBnet/IP message
exchange including heart beating is hidden from the client programmer, who merely is
faced with an API to send and receive cEMI messages. In addition, eibclient is able to
parse cEMI messages to extract the relevant data as well as assemble them. The current
implementation is limited to TP1 standard frames.

Eibxlator is a collection of encoders /decoders for Application layer protocol data units
(APDUs) relevant for exchanging and interpreting group values. In this version only a
subset of KNX DPT‘s are implemented, but the package was designed to make the
addition of further ones easy.

Eibpoints offers the ability to maintain a list of the data points in the KNX/EIB system and
their relevant data, including group address, friendly name, and DPT type. The data
point list abstraction offers lookup facilities by name and address. The entire
configuration can be exported and imported as an XML file or stream.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 11

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 11

Dim the light with Calimero

try {

CEMI_Connection tunnel= new CEMI_Connection(
new InetSocketAddress("localhost",

EIBnetIP_Constants.EIBNETIP_PORT_NUMBER));

PointPDUXlator dimVal = PDUXlatorList.getPointPDUXlator(
PDUXlatorList.TYPE_8BIT_UNSIGNED,
PDUXlator_8BitUnsigned.DPT_SCALING[0]);

dimVal.setServiceType(PointPDUXlator.GROUP_VALUE_WRITE);

dimVal.setValue(„75");

CEMI_L_DATA message = new CEMI_L_DATA(
CEMI_L_DATA.MC_L_DATAREQ,
new EIB_Address(),
new EIB_Address("0/0/1"),
dimVal.getAPDU);

tunnel.sendFrame(message, CEMI_Connection.WAIT_FOR_CONFIRM);

}

catch (EIBClientException ex) { } // connection error

This code example shows how easily a dimmer can be set to another value using the Calimero APIs. First,
a new cEMI connection is instantiated, giving the IP address of the server and the default port number for
EIBnet/IP. The constructor tries to establish a tunnelling connection with the server. If the operation
succeeds and the Connect_Response frame has been received heartbeating is started and the constructor
returns the cEMI connection object. If something goes wrong an Exception is thrown including an
appropriate error message. The cEMI connection object not only allows to send and receive cEMI
messages but also handles the heart beating and disconnection. For receiving, EventHandlers can be
registered that are called on every incoming frame.

The next step is to construct a PDU translator. For this purpose the static method getPointPDUXlator is
called with the required major and minor type. If the requested DPT type is implemented we get a
instance of PointPDUXlator class, which is the base class for each PDUXlator implementation. If the major
or minor type can not be found an Exception is thrown.

Then the service type is set, in our case a group value write request. The byte representation of the Layer
7 message can be retrieved using getAPDU(). Now we set the PDU translator value. Note that each
PointPDUXlator class implements the abstract method setValue(String value) so that the values can be
always set through this method, regardless of the specific type. If the parsing does not succeed an
Exception is thrown.

All that is left to do is to set up a new cEMI L_Data request with the appropriate destination address and
send it to the server. The source address can be left blank as the EIBNet/IP server will place its own
address into it. We set the APDU bytes extracted from the translator as message body and send the frame
using the tunnel instance.

In the example the send method WAIT_FOR_CONFIRM is used, in which the request sendFrame() blocks
until the Tunnelling Ack and even the cEMI_L_Data.con message have been received. The other send
mode, IMMEDIATE_SEND, returns immediately. The message status must in this case be checked by the
programmer itself using the getStatus() method.

Erb/Neugschwandtner/Kastner/Kögler - Open-source foundations ...

KNX Scientific Conference 2005, Pisa 12

KNX Scientific Conference 2005
Open-source foundations for PC based KNX/EIB access & management - 12

Outlook and future work

• Re-examine auto.tuwien PEI16 kernel driver
– More robust timing (BCU2)

• Merge back end codebases for eibd and Tweety
– Keep simple, but e.g. add USB

• Extend Calimero
– Management connections (eibclient)

• Straightforward extension

– USB connections (eibclient)
• Also cEMI based
• Via javax.usb – just standardized

– Implement further DPTs (eibxlator)
– Grouping of data points (eibpoints)

• Project homepage
– http://www.auto.tuwien.ac.at/projects/knxlive

Two open KNX/EIB workstation stack implementations were presented. One („eibd“) is
written in C++, supports various bus access methods and is geared more towards
device management, while the other („Calimero“) is written in Java, builds upon
EIBnet/IP and exclusively targets group communication. Eibd can also act as EIBnet/IP
server. In addition, a lean EIBnet/IP Tunnelling server is available („Tweety“). All
components are placed under the GPL. A bootable Live Linux CD with these
components plus a PEI16 driver preinstalled can be downloaded from the project
homepage.

Further work is necessary on the PEI16 driver, which currently exhibits problems when
used with a BCU2. Also, eibd and Tweety should use the same access hardware
abstraction to ease the inclusion of further hardware interfaces like USB.

Regarding Calimero, possible next steps include support for management connections,
further data point types and the grouping of data points in the data base (e.g., to
represent a dimmer with its subfunctions or access points by location). USB support is
also of interest on this level. Since KNX/EIB USB interfaces also use cEMI, such an
extension should be able to re-use considerable amounts of the existing implementation.

